Seminar Grundlagen Machine Learning
Methoden und Algorithmen zur praktischen
Umsetzung mit Python

02: Clustering (Cluster Analysis)




Overview

» Introduction into cluster analysis
» Partioning methods

» Hierarchical methods

» (Density-based methods)

» Evaluation of clustering

» Case studies
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Introduction to Cluster Analysis

» How would you group/cluster these objects?
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[cf. Slides to Chapter 7.1-7.4 in Berthold, Borgelt, et al. - Guide To Intelligent Data Analysis ]

» Clustering:
Find groups (so-called “clusters”) in a set of instances (data objects).
The groups are not known.
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Introduction to Cluster Analysis

» Solution 1: Shape
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Introduction to Cluster Analysis

» Solution 2: Color
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Introduction to Cluster Analysis

Cluster Analysis (or simply “clustering”):

Partitioning a set of data objects into groups (=clusters), such that:
» data objects within one cluster are similar to each other
» data objects of different clusters are dissimilar to each other

Goal: Discover previously unknown groups within the data.

Clustering is known as unsupervised learning because no information about
classes is available for the instances.
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Introduction to Cluster Analysis

Examples of applications of cluster analysis:
» group similar documents (search engines, text mining, ...)

» find similar recordings from technical systems
(automotive, automation, ...)

group similar pixels in images (image processing)
» find different groups of customers (marketing)
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Introduction to Cluster Analysis

The most common types of clustering methods are

partitioning methods
hierarchical methods
density-based methods
grid-based methods
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» we will focus on partitioning and hierarchical methods
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Partitioning methods

Partitioning methods:

» find k clusters in the data set (k has to be pre-defined !)
» each cluster must contain > 1 instances

» each instance must belong to exactly one cluster

» usually distance-based
Steps:
1. Creation of initial partitioning (e.g. randomly).

2. lterative improvement of the partitioning by moving objects from one cluster
to another. This is done by optimizing some criterion of what a "good"
partitioning should look like.

3. Stop, if the partitioning quality criterion is satisfied.
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Partitioning methods
Functioning of k-means

- randomly select k initial cluster centers
- assign instances to closest cluster center

1) Q. @

Oc,

\ 4

- determine new cluster centers

A - re-assign instances to closest cluster center
3 o) o)
Ocz
@ O @] @)
(o] %]
Q@
(] @]

=

N

- determine new cluster centers (the clusters’ ,mean®)

- re-assign instances to closest cluster center

2) o o
e o Ooc; o o

@ Oc2

® o

- determine new cluster centers
- re-assign instances to closest cluster center

4) o
Oc2
@ @ @] (@)
OC1 o C,
o C1

v

o

v

Prof. Dr. Andreas Theissler

10



Partitioning methods

Evaluation of k-Means

>
>

for a good initialization, “good” clusters are found after few steps

the result is sensitive to the initial cluster centers that were chosen
randomly, therefore the clustering is done several times
(k-Means++ uses a more advanced way of initialization)

sensitive to outliers since they influence the clusters’ mean values
we have to be able to calculate the “mean” of a cluster
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Machine Learning with Python
scikit-learn

» https://scikit-learn.org

» In the python library scikit-learn (sklearn) a variety of machine learning methods is
available

» please refer to the online documentation of the library, with many working examples

https://scikit-learn.org

For example the reference for k-means can be found under:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster. KMeans.html
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https://scikit-learn.org/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Machine Learning with Python

scikit-learn . e

The general principle for clustering:

Imports
load data set

preprocessing (e.g. scaling)
creation of clustering model, for example KMeans (with parameters)

the clustering step: using model.fit ()

o g~ W bR

analyse cluster results

This is a basic setting. In addition to that data might be plotted, or the entire
process can be repeated to find the best clustering
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Machine Learning with Python

First example (k-means) . eeam

# import required modules

import matplotlib.pyplot as plt

from sklearn.datasets import make blobs

from sklearn.preprocessing import MinMaxScaler

from sklearn.cluster import KMeans

# create data set with four clusters (for our experiment)

data, @ = make blobs(n samples=200, n features=2,
centers=[(1,1), (1,8), (8,1), (8,8)1,
cluster std = [1, 0.5, 1, 2],

random state=123)

# plot the input data
plt.scatter (datal:, 0], datal[:, 1], edgecolors='black")
plt.show ()
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Machine Learning with Python
First example (k-means)

leavin

# min-max scaling

scaler = MinMaxScaler () .fit (data) kemeans
data = scaler.transform(data) 10 : o
. ®
# cluster the data with the specified number 08 ; "‘%i-_ °
# of clusters ‘ﬁgﬁ ., © RERCH I
6 - o, o @
clust = KMeans (n_clusters=4) " o *° o8 o
clust.fit (data) g . °
4 s .
. . . . ° '9036" & o.l s @ ]
print (clust.labels ) # assigned cluster indices 02 ] ﬂ%*g o® ®e oo
— o 03 S ch;b LT o0
o= g5 '..c a0
[ ]
# plot cluster results with centers 00 1 °

plt.figure (figsize=(6, 6)) 0 0z 04 05 08 10
plt.scatter (datal:, 0], datal[:, 1], c = clust.labels ,
cmap=plt.cm.coolwarm, edgecolors='black")
plt.scatter (clust.cluster centers [:, 0],
clust.cluster centers [:, 1],
marker='X"', s=100, c="black")# shows cluster centers
plt.title('k-means')

plt.show ()
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Machine Learning with Python

First example (k-means) . e

» for other clustering models, the source code requires only minor changes, e.g.:

» the use of a different sklearn class
» or different preprocessing steps
» or loading different data sets
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Hierarchical clustering

Hierarchical methods create a hierarchy of splits/merges of a dataset:

» agglomerative methods (bottom-up):
start with each data object being one cluster
iteratively merge the clusters
stop when all clusters are merged or a stopping condition is met
» divisive methods (top-down):
start with all data objects being one cluster
iteratively split each cluster into smaller ones
stop when each object forms its own cluster or a stopping condition is met

» merging or splitting is done based on dissimilarities
( = distances, so-called “linkages”) or on densities

» a merging or splitting step can not be undone
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Hierarchical clustering

The underlying principle

agglomerative

(bottom-up)
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Hierarchical clustering
Dissimilarity between clusters (“linkage variants”)

Notation: Let C;, ; € D with C; n C; = @ be two cluster of size N;, respectively N;. ¢; and ¢; denote
representatives for the clusters, and o refers to data points in the data set.

centroid: Dissimilarity between centroids, e.g. the mean value vectors: d(C;,C;) = d(c;, ¢;)
average linkage: Average dissimilarity between all pairs of points: d(Ci, Cj) = ﬁZoeciZo,ecj d(o,0")
iVj
» leads to compact clusters

single linkage: Dissimilarity between the two most similar data points: d(Ci,Cj) = Cmir) c d(o,0")
0€C(;, 0°EC)

» can follow chains in the data, i.e. can cluster data sets with “strange” shapes

» sensitive to outliers

complete linkage: Dissimilarity between the two most dissimilar data points: d(Ci, Cj) = . max d(o,0")
0€C(;, 0°EC)

» leads to compact clusters

» sensitive to outliers

average centroid complete single Ward

minimise

@ @) @ @) @ @)
.%O ® O— 00 | @ > @ @) within-cluster
@ '®) @ ®) @®——0 variance
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Hierarchical clustering

Functioning of agglomerative clustering
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Distanz

Hierarchical clustering
Dendrogram

Dendrogram
hierarchical clustering can be visualized with a tree-like structure
» a so-called dendrogram

the dendrogram shows the splitting/merging operations, together with the
corresponding dissimilarities (height = distance)
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Hierarchical clustering

.eewat

fimports ..

# create data set with four clusters

data, @ = make blobs(n samples=200, n features=2,
centerSZ[(l,l), (1/8)/ (8/1)/ (8/8)]1
cluster std = [1, 0.5, 1, 21])

# min-max scaling
scaler = MinMaxScaler () .fit (data)

data = scaler.transform(data)

#cluster the data with the specified linkage variant
clust = AgglomerativeClustering(linkage="average", n_clusters=4)

clust.fit (data)
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Hierarchical clustering

learn

# plot cluster results .

plt.figure(figsize=(6, 0))

plt.scatter(datal:, 0], datal:, 1], ¢ = clust.labels ,
cmap=plt.cm.coolwarm, edgecolors='black')

plt.title (“"Agglomerative clusteringh)

plt.show () Agglomerative clustering
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Density-based methods
Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

details see for example (Ester et al., 1996)
Hyperparameters:
- radius €
MinPts (number of data points in the neighbourhood including the data point itself)
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Density-based methods
DBSCAN

#imports ..

# create data set with four clusters

data, @ = make blobs(n samples=200, n features=2,
centers=[(1,1), (1,8), (8,1), (8,8)],
cluster std = [1, 0.5, 1, 21])

# min-max scaling
scaler = MinMaxScaler () .fit (data)

data = scaler.transform(data)

#cluster the data with the specified radius and number of data points
clust = DBSCAN(eps=0.1, min samples=3)
clust.fit (data)
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Density-based methods

DBSCAN . e

# plot cluster results

plt.figure(figsize=(6, 0))

plt.scatter(datal:, 0], datal:, 1], ¢ = clust.labels ,
cmap=plt.cm.coolwarm, edgecolors='black')

plt.title ("DBSCAN clustering')

plt.show() DBSCAN clustering
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Evaluation of clustering

Cluster evaluation (or cluster validity validation) assesses:

1. the feasibility of clustering analysis on a data set
(before clustering)

assessing clustering tendency
(Check whether a nonrandom structure exists in the data)

determining the number of clusters in a data set

2. the quality of the results generated by a clustering algorithm
(after clustering)

determining the number of clusters in a data set
measuring the clustering quality

Prof. Dr. Andreas Theissler
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Evaluation of clustering
Assessing clustering tendency

Assessing of cluster tendency (before clustering)

» If an algorithm “finds clusters” --

does the data really
have “reasonable” clusters?

example: k-means on random data
(uniform distribution, i.e. no clusters

to be expected)

Prof. Dr. Andreas Theissler
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Evaluation of clustering

Determining the number of clusters

Example: Elbow/knee method for the Iris data set

Total Wethim Sum of Souares

=

§ -
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coolant temperature [*C]

Case studies

Cluster vehicle fault codes into
the operation modes when they
where detected

» DTC “P0171 : System Too Lean Bank 1”

» with freeze frames engine RPM and
engine coolant temperature

120
|

engine warm  engine warm and

ode 1 n0de 2, .
and uydle vehicle is moving

100
]

G0
|

40

engine cold and
in idle

20
|

> Iidentified predominant modes:

mode 1: engine warm and in idle

mode 2: engine warm and vehicle is
moving

mode 3: engine cold and in idle

Andreas Theissler. “Multi-class Novelty Detection in
Diagnostic Trouble Codes from Repair Shops”.
Proceedings IEEE International Conference on Industrial

I I I I I I
0 1000 2000 3000 4000 5000

engine RPM

' Informatics. 2017
6000
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