
Seminar Grundlagen Machine Learning

Methoden und Algorithmen zur praktischen

Umsetzung mit Python

03: Classification

Fundamentals
Defining classification

Remember the introduction to “clustering”?

The task of clustering is to group instances

➢ Classification:

“Classify” an instance as any of N pre-defined classes.

Prof. Dr. Andreas Theissler

Fundamentals
Defining classification

Example 1: Classify the instances as one of the three classes “circle”,

“square”, “triangle”

class: circle

class: square

class: triangle

Prof. Dr. Andreas Theissler

Fundamentals: Machine Learning – on one slide
Classification of apples and pears

Breite

H
ö

h
e

training set

width: 7cm, height: 6cm + „apple“

width: 5cm, height: 9cm + „pear“

 ...

Training

1. training set + class labels are passed to a model

2. the model learns a decision function

„feature vectors“ +

„class labels“

„feature space“

„decision function“

Breite
H

ö
h
e

test set

width: 6 cm, height: 5 cm

width: 4 cm, height: 8 cm

 ...

Test

1. test data is passed to model without class labels

2. the model classifies the test data using the decision function

3. results are compared to the true class labels

Machine Learning

model

Machine Learning

model

pear

apple

error

(simple

error

measure)

1

4
= 25%

Prof. Dr. Andreas Theissler 4

Fundamentals
Machine learning

Prof. Dr. Andreas Theissler

Separation of training and test set: „hold-out“

training set

labeled data set test set

• split the labeled data set into training set and test set

➢ we should not use instances of the training set during test and

vice-versa!

Fundamentals
Machine learning

Prof. Dr. Andreas Theissler

Separation of training and test set: „cross-validation“

labeled data set

test set

test set

test set

test set

training set

• typically there is a lack of labeled training data

➢ one common method is cross-validation with „k-fold“:

• randomly split the training set into k chunks

• run training and test k times using each chunk as test set once and the remaining k-1
chunks as training set

• outputs k accuracies, that we can average
=> can also be used to estimate the variability of the expected results

fold 1 fold 2 fold 3 fold 4

Fundamentals
Statistical background

In applications, the Bayes error is usually unknown!

Calculating the Bayes error requires knowledge of:

1. the type of probability density functions

2. the statistical parameters of the probability distributions

3. the prior class probabilities

Bayes error

➢ The Bayes error lower bounds the

error rate for any classifier.

➢ note: the error is formulated

independently of classifier properties

➢ the error exclusively depends on the

properties of the data set in feature

space F

The Bayes error

Prof. Dr. Andreas Theissler

Fundamentals

Machine learning

Prof. Dr. Andreas Theissler

Evaluation criteria for Machine Learning models (Han et al.):

1. accuracy

2. speed (computational costs)

3. robustness (robustness against noise in training sets)

4. scalability (e.g. computational costs)

5. interpretability (understandability of the classifier or its results)

Fundamentals

Machine learning: classification

Prof. Dr. Andreas Theissler

classification results

(prediction)

class labels (true class)

„square“ „circle“

„square“ true „squares“: false „squares“:

„circle“ false „circles“: true „circles“:

Measuring the classification results

In the test phase, the number of correctly and incorrectly classified instances are

counted and stored in the so-called

“confusion matrix” (=“contingency table”):

(Note: rows and columns are not consistent in tools and literature!

Might be vice versa!)

Confusion matrix

 measuring classifier outputs (here for two classes):

Based on the confusion matrix, a variety of measures can be calculated (see e.g.

(Fawcett 04)). Some of them are:

1. 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑀
 =

𝑇𝑃+𝑇𝑁

𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸+𝑁𝐸𝐺𝐴𝑇𝐼𝑉𝐸

2. 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 𝑇𝑃𝑅 =
𝑇𝑃

𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸
 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

3. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑝𝑜𝑠 =
𝑇𝑃

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 =

𝑇𝑃

𝑇𝑃+𝐹𝑃

Prof. Dr. Andreas Theissler 10

Fundamentals

Classification results

result

(prediction)

class label (true class)

POSITIVE NEGATIVE

positive TP FP

negative FN TN

TP: number of true positives

FP: number of false positives

FN: number of false negatives

TN: number of true negatives

POSITIVE = TP + FN

NEGATIVE = TN + FP

M = number of instances

 = POSITIVE + NEGATIVE

For many classes, the confusion matrix becomes hard to read.

Example: classification of handwritten digits 0…9 („MNIST“)

Reference

Prediction 0 1 2 3 4 5 6 7 8 9

0 973 0 3 0 2 2 6 2 5 3

1 0 1127 2 0 1 0 2 2 0 4

2 0 2 1013 1 2 0 1 11 3 1

3 1 0 2 997 0 10 0 1 3 5

4 0 0 1 0 963 1 4 0 5 7

5 1 0 1 4 0 865 4 1 3 3

6 2 2 1 0 5 6 941 0 2 0

7 1 0 5 3 1 1 0 1006 4 6

8 1 4 4 2 1 4 0 1 944 0

9 1 0 0 3 7 3 0 4 5 980

Accuracy : 0.9809

Statistics by Class:

Class: 0 Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6 Class: 7 Class: 8 Class: 9

0.9929 0.9930 0.9816 0.9871 0.9807 0.9697 0.9823 0.9786 0.9692 0.9713

Prof. Dr. Andreas Theissler 11

Fundamentals

Classification results

 Interprete the confusion matrix on the previous slide

 Name three findings you can see in the matrix

 Possible solutions:

• 6 digits that are „9“ were misclassified as „7“

• 980 digits that are „9“ were correctly classified as „9“

• 98% of all digits were classified correctly

• „0“ classified as „0“: 99,29%, ...

Prof. Dr. Andreas Theissler 12

Fundamentals

Classification results

 overfitting: the classifier learns the specifics of the training set, but does not generalize well

 underfitting: the classifier does not learn the training set well enough (e.g. because the decision

functions are not flexible enough)

Prof. Dr. Andreas Theissler 13

Artificial neural networks (ANNs)

Overfitting and underfitting

=

=

„underfitting“:

error on training set: high

error on test set: high

„overfitting“:

error on training set: very low

error on test set: high

good model:

error on training set: low

error on test set: low

➢ Note:

We do not want the optimal solution on the training set.

We want an optimal solution on unseen data!

Classifiers
Linear classifiers

Prof. Dr. Andreas Theissler

General description of linear classifiers

f1

f 2

class ω2

class ω1

• the idea:

separate classes with a linear

decision function

decision function

Classifiers
Non-linear classifiers

Prof. Dr. Andreas Theissler

➢ linear classifiers have a strong limitation:

• they work well when the classes are linearly separable, if this is not the case

they can’t find a good solution

➢ let’s have a look at the so-called “XOR-problem”:

• a data set with only four instances that appears to be quite simple

• try to separate the two classes using any type of linear classifier

The „XOR-problem“

f1

class ω1

class ω2

f 2

Classifiers
Non-linear classifiers

Prof. Dr. Andreas Theissler

• to overcome the problem of linearly non-separable data sets: classifiers with

non-linear decision boundaries are introduced in the following slides

Introducing non-linear classifiers

Classifiers
Non-linear classifiers

Prof. Dr. Andreas Theissler

nearest neighbor (NN, 1-NN)

• the idea:

an instance belongs to the class of its nearest

neighbor

• how it works:

1. store all instances from a training set

2. for an unclassified instance find the nearest

neighbor in the training set

3. assign the class of the nearest neighbor

Classifiers
Non-linear classifiers

Prof. Dr. Andreas Theissler

nearest neighbor (NN, 1-NN)

f1

f 2

class ω2

unclassified instance

class ω1

nearest neighbor

Classifiers
Non-linear classifiers

Prof. Dr. Andreas Theissler

nearest neighbor (NN, 1-NN): evaluation

• interpretability

• easy to implement

• can be applied to any type of
data set, if a distance
measure can be defined

• training phase is extremely
fast (training corresponds to
just storing the instances)

advantages +

• robustness: sensitive to
individual outliers in the
training set

• scalability: classification can
be slow, since it requires
visiting of all instances to find
the nearest neighbor

disadvantages
-

Classifiers
Non-linear classifiers

Prof. Dr. Andreas Theissler

k-nearest neighbors (k-NN with k > 1)

• the idea:

an instance belongs to the class of its k nearest

neighbors

• how it works:

1. store all instances from a training set

2. select the parameter k

3. for an unclassified instance find the k nearest

neighbor in the training set

4. classify the instance based on the majority class

in the k nearest neighbors (typically odd numbers

are used: 3, 5, 7, ...)

 k-nearest neighbors (k-NN)

Prof. Dr. Andreas Theissler

Classifiers
Non-linear classifiers

f1

f 2

class ω2

unclassified instance

class ω1

3 nearest neighbors (k=3)

sklearn imports

from sklearn.datasets import make_moons

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix, accuracy_score

from sklearn.preprocessing import MinMaxScaler

create data set

data, labels = make_moons(n_samples=500, noise=0.1)

split into training and test set

train_data, test_data, train_labels, test_labels = train_test_split(data,

 labels, test_size = 0.5)

[…]

Prof. Dr. Andreas Theissler 22

Classifiers

k-nearest neighbours (k-NN)

[…]

min-max scaling: determine scaling parameters

scaler = MinMaxScaler().fit(train_data)

scale train set and test set

train_data = scaler.transform(train_data)

test_data = scaler.transform(test_data)

create k-nearest neighbours with k = 3

model = KNeighborsClassifier(n_neighbors=3)

train model on training set

model.fit(train_data, train_labels)

classification of test set

predictions = model.predict(test_data)

acc = accuracy_score(test_labels, predictions)

cm = confusion_matrix(test_labels, predictions)

Prof. Dr. Andreas Theissler 23

Classifiers

k-nearest neighbours (k-NN)

Classifiers
Non-linear classifiers

Prof. Dr. Andreas Theissler

k-nearest neighbors (k-NN): evaluation

• interpretability

• easy to implement

• can be applied to any type of
data set, if a distance measure
can be defined

• training phase is extremely fast
(training corresponds to just
storing the instances)

advantages +

• scalability: classification can be
slow, since it requires visiting of
all instances to find the k nearest
neighbors

disadvantages -

The idea:

separate the classes in the training set by

recursively splitting the data by thresholding

individual features

The algorithm:

1. create a node

2. select the best split using some

splitting criterion

3. grow branches according to the split

(binary vs. multiple branches)

4. recursively continue with 1. until some

stopping criterion is met or all branches

contain only feature vectors from one

class („purity“)

=> bottom nodes become „leaves“

Prof. Dr. Andreas Theissler

Decision trees

feature 1 < 4

feature 2 < 5 feature 3 < 8

yes no

class
1

class
2

...
yes no

25

 learning a decision tree from a training set is referred to as decision tree induction

 to avoid overfitting, the resulting tree can be pruned

 there are different splitting criteria, i.e. techniques to identify the features to be used in the
current split together with the threshold

 per split/node one feature is used (univariate split)

 however, there are advancements of trees combining features (multivariate splits)

 common decision tree algorithms:

 ID3 (Quinlan, 1986)

 C4.5 (Quinlan, 1993)

 C5.0 (Quinlan, 2017)

 CART (Classification and Regression Trees) (Breiman, 1984)

 although having been around for many years, decision trees are worth to study:

 they are interpretable (a currently hot research topic in AI)

 they are the components of powerful, advanced machine learning methods like random forests and
gradient boosting machines (e.g. xgboost)

Prof. Dr. Andreas Theissler 26

Decision trees

Classifiers
Non-linear classifiers

Prof. Dr. Andreas Theissler

• the resulting decision boundaries are piecewise

linear

• a decision tree can be transformed into a rule-

base:

if feature 1 < x ...

• (there are advanced techniques using a

combination of several features per node)

Decision trees

Information gain uses entropy from information theory (Shannon)

 the split with the highest information gain is chosen, i.e. the split that minimizes the
information needed to classify the remaining feature vectors

 in other words: the split that creates the least "impurity“

 a split can create multiple branches (N>2)

 in the context of decision trees this entropy corresponds to a measure of impurity

The entropy is measured as information in bits and is calculated by:

𝐼 𝐷 = − ෍

𝑖=1

𝐶

𝑝𝑖 ∗ 𝑙𝑜𝑔2 𝑝𝑖

 with 𝐷: data set, 𝐶 : number of classes, 𝑝𝑖 =
|𝐶𝑖 𝑖𝑛 𝐷|

|𝐷|
 : probability that a feature vector in

𝐷 belongs to class 𝐶𝑖

 𝐼 𝐷 = 0 … 1, where 𝐼 𝐷 = 0, if all feature vectors belong to the same class

Prof. Dr. Andreas Theissler 28

Decision trees

Splitting criterion: information gain

In order to find the best split, the entropy for all possible splits is calculated. For a split A:

𝐼 𝐷𝑠𝑝𝑙𝑖𝑡 𝐴 = − ෍

𝑗=1

|𝑆|
|𝐷𝑗|

|𝐷|
∗ 𝐼 𝐷𝑗

with:

 |𝑆|: number of possible splits, i.e. for discrete, categorical or binary values, the number

of different values

 |𝐷𝑗|: number of feature vectors in partition 𝑗



|𝐷𝑗|

|𝐷|
 : in order to weight according to the number of feature vectors per partition

From all candidate splits, the one is selected that maximizes the information gain 𝑰𝑮 :

𝐼𝐺𝑠𝑝𝑙𝑖𝑡 𝐴 = 𝐼 𝐷 − 𝐼 𝐷𝑠𝑝𝑙𝑖𝑡 𝐴

 in other words: 𝐼𝐺𝑠𝑝𝑙𝑖𝑡 𝐴 determines how much is gained by the splitting candidate A

Prof. Dr. Andreas Theissler 29

Decision trees

Splitting criterion: information gain

Exercise: „Information gain“

Calculate the information gain for the

following two-class problem with categorical

attributes

 number of feature vectors: 14

 two classes: P and N

 9 feature vectors of class P, 5 of class N

1. Entropy of 𝑫:

 𝑝𝑃 =
9

14
 ; 𝑝𝑁 =

5

14

 𝐼 𝐷 = − σ𝑖=1
𝐶 𝑝𝑖 ∗ 𝑙𝑜𝑔2 𝑝𝑖

= −
9

14
∗ 𝑙𝑜𝑔2

9

14
−

5

14
∗ 𝑙𝑜𝑔2

5

14
= 0.94 𝑏𝑖𝑡𝑠

2. Entropy of possible split by feature „outlook“:

 𝑆 = 3 ; 𝑆 =(sunny, overcast, rain)

 𝐷1 = 5 ; 𝐷2 = 4 ; 𝐷3 = 5 : (possible splits by S)

 𝐼 𝐷𝑠𝑝𝑙𝑖𝑡 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = − σ𝑗=1
|𝑆| 𝐷𝑗

𝐷
∗ 𝐼 𝐷𝑗

=
5

14
∗ −

2

5
∗ 𝑙𝑜𝑔2

2

5
−

3

5
∗ 𝑙𝑜𝑔2

3

5

+
4

14
∗ −

4

4
∗ 𝑙𝑜𝑔2

4

4

+
5

14
∗ −

3

5
∗ 𝑙𝑜𝑔2

3

5
−

2

5
∗ 𝑙𝑜𝑔2

2

5
= 0.694 𝑏𝑖𝑡𝑠

3. Information gain for this split:

 𝐼𝐺𝑠𝑝𝑙𝑖𝑡 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 𝐼 𝐷 − 𝐼 𝐷𝑠𝑝𝑙𝑖𝑡 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 0.246 𝑏𝑖𝑡𝑠

4. Repeat this for features „Temperature“ and „Humidity“
and find maximum information gain.

Prof. Dr. Andreas Theissler 30

Decision trees

Splitting criterion: information gain

adapted from original ID3 paper: (Quinlan, 1986)

3 out of the 5 feature

vectors with

feature=„sunny“ are

of class N

Gini index finds that binary split that minimizes the “impurity”

The Gini index for 𝐷 is calculated:

𝐺𝑖𝑛𝑖 𝐷 = 1 − ෍

𝑖=1

𝐶

𝑝𝑖
2

with notation equivalent to information gain:

 𝐷: data set, 𝐶 : number of classes, 𝑝𝑖 =
|𝐶𝑖 𝑖𝑛 𝐷|

|𝐷|
 : probability that a feature vector in 𝐷

belongs to class 𝐶𝑖

 𝐺𝑖𝑛𝑖 𝐷 = 0 … 1, where 𝐺𝑖𝑛𝑖 𝐷 = 0, if all feature vectors belong to the same class,

which is the ideal case

Prof. Dr. Andreas Theissler 31

Decision trees

Splitting criterion: Gini index

In order to find the best binary split, the weighted sum of the Gini indices 𝐺𝑖𝑛𝑖 𝐷𝑗 resulting

from the two partitions is calculated:

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 𝐴 𝐷 =
|𝐷1|

|𝐷|
∗ 𝐺𝑖𝑛𝑖 𝐷1 +

|𝐷2|

|𝐷|
∗ 𝐺𝑖𝑛𝑖 𝐷2

The reduction of impurity is then calculated by:

∆𝐺𝑖𝑛𝑖 = 𝐺𝑖𝑛𝑖 𝐷 − 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 𝐴 𝐷

 All possible split candidates are tested, and the one is selected where ∆𝐺𝑖𝑛𝑖 is maximum.

Prof. Dr. Andreas Theissler 32

Decision trees

Splitting criterion: Gini index

Exercise: „Gini index “

Calculation of Gini index for the following

two-class problem with categorical attributes

 number of feature vectors: 14

 two classes: P and N

 9 feature vectors of class P, 5 of class N

1. Gini of 𝑫:

Gini creates binary splits, so let‘s define a split
on the feature „Outlook“ as
(1: sunny ; 2:rain or overcast)

 𝑝𝑃 =
9

14
 ; 𝑝𝑁 =

5

14

 𝐺𝑖𝑛𝑖 𝐷 = 1 − σ𝑖=1
𝐶 𝑝𝑖

2 = 1 −
9

14

2
−

5

14

2
=

0.46

2. Gini of partitions

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 𝐷

=
|𝐷1|

|𝐷|
∗ 𝐺𝑖𝑛𝑖 𝐷1 +

|𝐷2|

𝐷
∗ 𝐺𝑖𝑛𝑖 𝐷2 = ⋯

3. Calculate the split‘s improvement of Gini

∆𝐺𝑖𝑛𝑖 = 𝐺𝑖𝑛𝑖 𝐷 − 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 𝐴 𝐷

4. Repeat this for other split options on this
feature and for the features „Temperature“
and „Humidity“ and find the best split.

Prof. Dr. Andreas Theissler 33

Decision trees

Splitting criterion: Gini index

adapted from original ID3 paper: (Quinlan, 1986)

 in addition to Gini and entropy, there are more splitting criteria.

 Gini and entropy are the most common ones.

 the splitting criterion can be viewed as a hyperparameter, so various can be tested

 results with Gini and entropy are often not very different, if results are different entropy

tends to yield more balanced trees (Geron, 2019)

 computation of Gini is faster

 in the python-library scikit-learn, Gini is the default

Prof. Dr. Andreas Theissler 34

Decision trees

Splitting criteria

 https://scikit-learn.org

 In the python library scikit-learn (sklearn) a decision tree
is available with the class DecisionTreeClassifier

 uses CART (Classification and Regression Trees) (Breiman, 1984)

 some important parameters:

 max_depth, allowing to prune the tree

 criterion, splitting criterion: Gini index is the default, entropy can be used

Prof. Dr. Andreas Theissler 35

Decision trees

scikit-learn

Prof. Dr. Andreas Theissler 36

Decision trees

scikit-learn

Decision tree with Python and scikit-learn

Prof. Dr. Andreas Theissler 37

Decision trees

scikit-learn

Prof. Dr. Andreas Theissler

Decision trees

Evaluation

advantages +

• interpretability: results are human-
readable, which is a benefit for many
domains (e.g. medical systems)

• works with numerical and categorical
data

• no scaling of input data required

• can return feature importance

• can also be used for regression
(regression trees)

disadvantages -

• decision boundaries are not very
flexible (piecewise-linear), they
evaluate one feature at a time

• at each step the locally optimal
decision is made, does not
necessarily lead to a globally optimal
solution

• a tree may overfit the data
(pruning should be used)

• slightly different data (e.g. by
randomly splitting train and test set),
may lead to completely different trees

38

The idea:
Create many decision trees and combine the
result with majority voting.

Assumption: the result of a combination of
different classifiers is likely to be better than of a
single classifier.

A random forest is an ensemble method,
i.e. a random forest is an ensemble of trees.

The algorithm:

1. create many different decision trees
𝑇1 … 𝑇𝑀

2. the different trees are created by
randomly subsampling the features and
the data set at each node of each tree

3. a feature vector in the test set is classified
by each tree 𝑇𝑖

4. the classification result is the most
frequent result from 𝑇1 … 𝑇𝑀
(majority voting)

Prof. Dr. Andreas Theissler

Random forests (Breiman, 2001)

feature 1 < 4

feature 2 < 5 feature 3 < 8

yes no

class
1

class
2

...
yes no

feature 5 < 7

feature 3 < 1 feature 1 < 0

yes no

class
2

class
3

...
yes no

𝑇1

𝑇𝑀

…

39

A random forest is an ensemble of randomly created, different decision trees

(base classifiers).

 the number of trees is a hyperparameter (e.g. 100)

Prof. Dr. Andreas Theissler 40

Random forests

base classifier

1

base classifier

2

base classifier

n

voter

(majority

voting)...

random

sampling

(bagging)
data

An ensemble performs best, if the base classifiers are diverse and unrelated.

In a random forest this is achieved by:

1. bagging: training each of the decision trees with a different subset of the data

 bootstrap aggregation (bagging) is typically used for this

 in bagging, from a data set 𝐷 consisting of 𝑁 feature vectors, 𝑁 of these feature vectors are

randomly drawn with replacement and become the training set 𝐴

 i.e. a feature vector can be drawn multiple times

 the feature vectors not drawn become the test set 𝐵

 it can be shown, that on average 63.2% of the feature vectors are in the training set

2. feature subsampling: randomly selecting subsets of features at each node of each tree

 for example for |𝐹| features, |𝐹| can be selected as candidates at each node

 using a splitting criterion, the best split is determined from this subset

Prof. Dr. Andreas Theissler 41

Random forests

Prof. Dr. Andreas Theissler

Random forests

Evaluation

advantages +

• avoids overfitting

• reduces the variance

• often better results compared to single trees

• works with numerical and categorical data

• no scaling of input data required

• works for large, high-dimensional data sets,
since at each split only a subset is tested

• can return feature importance

• can also be used for regression

disadvantages -

• in contrast to single decision trees, a
random forest is not (easily) interpetable

• computationally expensive, compared to
single tree

42

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier

 In scikit-learn (sklearn) a random forest is available with the class
RandomForestClassifier

 some important parameters:

 n_estimators, determining the number of decision trees to be created

 max_depth, allowing to prune the tree

 max_features, number of features to consider at each split

 current defaults are: n_estimators=100, criterion='gini', max_depth=None

Prof. Dr. Andreas Theissler 43

Random forests

scikit-learn

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier

Prof. Dr. Andreas Theissler 44

Random forests

scikit-learn

 Gradient boosting machines (GBM) refers to a family of methods of ensembles of trees

using boosting

 GBMs are also referred to as gradient tree boosting

 an early boosting algorithm with decision trees is AdaBoost (Adaptive Boosting)

 later generalized and then termed Gradient Boosting Machines (Friedmann, 2000)

 a widely used scalable implementation is XGBoost (Extreme Gradient Boosting)

(Chen and Guestrin, 2016)

Prof. Dr. Andreas Theissler 45

Gradient boosting machines

 boosting uses an ensemble of subsequent base classifiers (weak learners)

 the idea of boosting is, that each base classifier k tries to correctly classify those feature

vectors misclassified by base classifier k-1

 this is achieved by random sampling, with increased probability of drawing a previously

misclassified feature vector (weights are iterativelly assigned to feature vectors)

 the final results is a combination of each classifiers‘ results, weighted by its accuracy

 early algorithms are AdaBoost and AdaBoost.M1

Prof. Dr. Andreas Theissler 46

Gradient boosting machines

Boosting

base classifier

1

base classifier

2

base classifier

3

voter

(weighted

voting)

...

data

base classifier

n

random sampling with higher

probability to draw

misclassified data points

The idea:

 Create many sequential decision trees

𝑇1 … 𝑇𝑀, where each new tree 𝑇𝑖 tries to

minimize the errors of the previous tree 𝑇𝑖−1.

 Combine the results with weighted voting.

 XGBoost is an ensemble method

consisting of sequential trees.

The algorithm:

1. add one tree 𝑇𝑖 per step

2. the new tree is found such that the error

of the previous tree 𝑇𝑖−1 is minimized

3. goto 1. until some stopping criterion is

reached (e.g. number of steps)

4. the classification result is found by using

the results of 𝑇1 … 𝑇𝑀, weighted by their

accuracies

 i.e. the votes of better trees have higher

weights

Prof. Dr. Andreas Theissler

Gradient boosting machines
XGBoost (Extreme Gradient Boosting) (Chen and Guestrin, 2016)

feature 1 < 4

feature 2 < 5 feature 3 < 8

yes no

class
1

class
2

...
yes no

feature 5 < 7

feature 3 < 1 feature 1 < 0

yes no

class
2

class
3

...
yes no

𝑇1

𝑇𝑀

…

47

GBMs and in specific XGBoost use a special form of boosting, referred to as gradient boosting

 one tree 𝑇𝑖 is added in each step

 regression trees are used (i.e. continuous outputs), allowing to sum up the subsequent outputs

 the new tree 𝑇𝑖 is selected such that an objective function 𝑜𝑏𝑗 is minimized

 general form of objective function:

𝑜𝑏𝑗 = 𝑙𝑜𝑠𝑠 + 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛

with:

 𝑙𝑜𝑠𝑠: some kind of error function expressing the error between predicted values and true values,

i.e. 𝑙𝑜𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠

 e.g. sum of squared errors

 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 : a term controlling the model 𝑇𝑖, i.e. 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑖), e.g. to avoid overfitting

 e.g. model complexity, like number of leaves

 minimizing 𝑜𝑏𝑗 is achieved by the trade-off of minimizing 𝑙𝑜𝑠𝑠, while keeping 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 minimal

 achieved with a gradient descent approach, referred to as functional gradient descent

 (beyond scope, see e.g. (Friedman,2000) or (Chen and Guestrin, 2016))

Prof. Dr. Andreas Theissler 48

Gradient boosting machines

XGBoost (Extreme Gradient Boosting)

Prof. Dr. Andreas Theissler

XGBoost

Evaluation

advantages +

• avoids overfitting

• usually better results compared to single
trees

• works with numerical and categorical data

• can handle missing values

• no scaling of input data required

• works for large, high-dimensional data sets,
since at each split only a subset is tested

• can return feature importance

disadvantages -

• in contrast to single decision trees, a
random forest is not (easily) interpetable

• computationally expensive compared to
single trees, however XGBoost was
implemented towards efficiency and
scalablitity

49

https://xgboost.readthedocs.io/en/latest/python/python_intro.html

 XGBoost is not contained scikit-learn (sklearn), module xgboost required

 however it can be combined with scikit-learn

 some important parameters:

 n_estimators, determining the number of decision trees to be created

 max_depth, allowing to prune the tree

 reg_lamda, regularisation parameter controlling the trade-off between loss and reg. term

 learning_rate, also referred to as \eta. controls the contribution of each new tree (0,1)

Prof. Dr. Andreas Theissler 50

XGBoost

Python module xgboost

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier

Prof. Dr. Andreas Theissler 51

XGBoost

Python module xgboost + scikit-learn

Support vector machines (SVM)
Introduction

Prof. Dr. Andreas Theissler

𝑥𝑖: one dimension in the feature

 space, i.e. one feature

𝑥𝑖: one feature vector (one instance)

Ԧ𝑥: the feature space

𝑥𝑖 𝑥𝑗: inner product, dot product, scalar

product of 𝑥𝑖 and 𝑥𝑗

𝑁: number of instances

𝑛: number of features

𝑤: vector of weights

| 𝑤 |: norm of the vector 𝑤

𝜔𝑖: class i

𝑦𝑖: label (+1 or -1)

Notation

We use arrows to denote vectors, in contrast to most of the literature on

data mining, where vectors are written without arrows.

Support vector machines (SVM)
Introduction

Prof. Dr. Andreas Theissler

Separating two classes with linear decision functions

x1

x 2

class ω2

class ω1

D1

D2

D3 The number of possible

decision functions is

infinite.

So which one should be

chosen?

Intuitively D3 seems to be

the best, but why?

Support vector machines (SVM)
Introduction

Prof. Dr. Andreas Theissler

Finding the optimal linear decision function

x1

x 2

class ω2

class ω1

D1 D3
margin of D

1

Based on the informal

explanation, let us compare

the two candidates D1 and D3

Our intuition was correct:

• D3 has the maximal

margin, it is much larger

than the margin of D1

➢ D3 is the optimal decision

function

Support vector machines (SVM)
Introduction

Prof. Dr. Andreas Theissler

Support vector machines for linear separable data

the idea:

separate the instances of two classes using a linear decision function referred to as

“hyperplane”

how it works: (informal explanation for a two-dimensional space)

1. find two parallel lines, one intersecting one or more instances at the boundary of

class ω1 and the other line intersecting one or more instances of class ω2

2. find the line, with equal distance to each of the two parallel lines

(the line „in the middle“)

3. measure the distance between the two outer lines

➢ this distance is referred to as the „margin“

➢ the optimal decision function is the one with the maximum margin

4. the decision function is expressed using instances from the training set,

the so-called support vectors

Support vector machines (SVM)
Expressing the decision function

Prof. Dr. Andreas Theissler

Expressing the decision function in two-dimensional space

A linear function in a two-dimensional space can be expressed by the well-known „slope-

intercept-form“:

𝑦 = 𝑚𝑥 + 𝑏

The y(x)-form is constrained to two dimensions. To make the formula more generic we use

the dimensions 𝑥1 and 𝑥2 and 𝑤1 instead of 𝑚:

𝑥2 = 𝑤1𝑥1 + 𝑏
which can be reformulated as

𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 0

Substituting the scalars with the vectors 𝑤 =
𝑤1

𝑤2
 and Ԧ𝑥 =

𝑥1

𝑥2

leads to the general form of the linear decision function:

𝒘 𝒙 + 𝒃 = 𝟎

Support vector machines (SVM)
Expressing the decision function

Prof. Dr. Andreas Theissler

Expressing the decision function using vectors

Up to now we have looked at a two-dimensional space (2 features),

where the linear decision function is simply a line.

In a three-dimensional space (3 features) the line becomes a plane

and in higher-dimensional spaces (>3) it is referred to as a „hyperplane“.

We will use the term hyperplane, independent of the number of dimensions.

The hyperplane is expressed as

𝒘 𝒙 + 𝒃 = 𝟎

 or 𝒘𝟏𝒙𝟏 + 𝒘𝟐𝒙𝟐 + … + 𝒘𝒏𝒙𝒏 + 𝒃 = 𝟎

 with 𝒘 =

𝒘𝟏

…
𝒘𝒏

 and 𝒙 =

𝒙𝟏

…
𝒙𝒏

where 𝑛 is the number of features. (For all data points 𝒙 becomes a matrix)

Support vector machines (SVM)
Expressing the decision function

Prof. Dr. Andreas Theissler

Using the decision function to classify instances

Instead of class labels 𝜔1 and 𝜔2we will use +1/-1 to label the classes:

𝑦𝑖 = +1 if 𝑥𝑖 is 𝜔1 and 𝑦𝑖 = −1 if 𝑥𝑖 is 𝜔2

Classification of a feature vector 𝑥𝑖 is done using the sign-function:

D 𝑥𝑖 = sign 𝑤 𝑥𝑖 + 𝑏

i.e.:

D 𝑥𝑖 = +1 if 𝑤 𝑥𝑖 + 𝑏 > 0
D 𝑥𝑖 = −1 if 𝑤 𝑥𝑖 + 𝑏 < 0

Please note: 𝑤 ≠ 𝜔 (𝜔 refers to the classes and 𝑤 to the so-called weights, in accordance

with the common notation used in literature)

Support vector machines (SVM)
Finding the optimal decision function

Prof. Dr. Andreas Theissler

Having done some math… the optimization problem is given by

minimize
1

2
||𝑤||2 (a)

subject to 𝑦𝑖 𝑤 𝑥𝑖 + 𝑏 ≥ 1 for all 𝑖 (b)

Using the „method of Lagrange“, we can incorporate (b) into (a).

Deriving the new equation and setting it to 0 yields the following optimization problem:

maximize L α = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖,𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 𝑥𝑖 𝑥𝑗

subject to σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖 = 0

 𝛼𝑖 ≥ 0 for all 𝑖

where 𝛼𝑖 and 𝛼𝑗 are the so-called Lagrance multipliers.

Support vector machines (SVM)

Finding the optimal decision function

Prof. Dr. Andreas Theissler

Support vector machines (SVM)
Finding the optimal decision function

Prof. Dr. Andreas Theissler

• SVM finds the optimal linear decision function:

the „maximum margin hyperplane“

• the found hyperplane is guaranteed to be the optimal solution, there are no local

minima

• the decision function is expressed using instances 𝑥𝑖 from the

training set

➢ the so-called „support vectors“

• this type of SVM is called „hard-margin SVM“ and can be used if the classes

are linearly separable

Summary: SVM for linearly separable classes

Support vector machines (SVM)
Soft-margin SVM

Prof. Dr. Andreas Theissler

What if the data is not fully linearly separable?

x1

x 2

class ω2

class ω1

D3

𝜉𝑖

𝜉𝑖

𝜉𝑖𝜉𝑖

A hard-margin SVM cannot find

a decision function if the classes

are not linearly separable.

Solution:

• allow some instances to be

on the opposite side of the

supporting hyperplanes

• penalize those instances by

introducing so-called slack

variables 𝜉𝑖:

• 𝜉𝑖 > 0 if the instance 𝑥𝑖

is not within the

boundary

• 𝜉𝑖 = 0 otherwise

This type of SVM is called „soft-

margin SVM“

Support vector machines (SVM)
Soft-margin SVM

Prof. Dr. Andreas Theissler

minimize
1

2
||𝑤||2 + 𝐶 σ𝑖=1

𝑁 𝜉𝑖

subject to 𝑦𝑖 𝑤 𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖 for all 𝑖

where 𝐶 is a regularization parameter controlling how many and how far instances

may lie outside of the supporting hyperplanes.

𝑪 is a hyperparameter, regularizing the influence of the slack variables

Again, using the method of Lagrange, the optimization problem can be

reformulated.

Optimization problem for the soft-margin SVM

Support vector machines (SVM)
Soft-margin SVM

Prof. Dr. Andreas Theissler

Support vector machines (SVM)
Non-linear decision functions

Prof. Dr. Andreas Theissler

The soft-margin SVM works fine, if individual instances prevent the SVM from

finding a linear decision function.

If the entire data set is not linearly separable, there is a better solution:

A data set that is not linearly separable in the given

feature space

𝑹𝑵

can be linearly separated in a higher-dimensional space

𝑹𝑴

𝑅𝑁 → 𝑅𝑀 𝑤ℎ𝑒𝑟𝑒 𝑀 > 𝑁

Support vector machines (SVM)
Non-linear decision functions

Prof. Dr. Andreas Theissler

Example: the XOR-problem

x1

class ω1

class ω2

x 2

x1

x 2

If we

1. add a third dimension x3 and

2. „somehow“ shift the instances of class ω1 on that dimension

➢ we can linearly separate the two classes in the new feature space 𝑅3

𝑅2 → 𝑅3

Support vector machines (SVM)
Non-linear decision functions

Prof. Dr. Andreas Theissler

Let us consider a mapping

function

𝑍 ≔ ϕ(Ԧ𝑥)

which maps 𝑅2 → 𝑅3

Mapping to higher-dimensional space using a mapping function

Using the mapping

𝑧1 ≔ 𝑥1
2

𝑧2 ≔ 2𝑥1𝑥2

𝑧3 ≔ 𝑥2
2

the classes can be linearly separated.

Support vector machines (SVM)
Non-linear decision functions

Prof. Dr. Andreas Theissler

For the mapping, we need to map each instance 𝑥𝑖 to an instance 𝑧𝑖 in the new

feature space using 𝑧𝑖 = ϕ(𝑥𝑖).

Incorporating ϕ() into the optimization problem yields

L α = ෍

𝑖=1

𝑁

𝛼𝑖 −
1

2
෍

𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 ϕ 𝑥𝑖 ϕ 𝑥𝑗

Problem:

Obviously we cannot just use any mapping function. In the two previous examples,

the mapping functions were ideal for the data set. They nicely separated the two

classes.

If we need to find specific mapping functions for each data set, the approach would

be infeasible.

Support vector machines (SVM)
Non-linear decision functions

Prof. Dr. Andreas Theissler

Looking at the optimzation problem, we notice that 𝑥𝑖 and 𝑥𝑗 are represented by

the inner product as ϕ(𝑥𝑖)ϕ(𝑥𝑗)

Now we use the so-called „kernel trick“:

Instead of actually doing the mapping using ϕ(), we replace the inner product by

𝐾 𝑥𝑖 , 𝑥𝑗 = ϕ 𝑥𝑖 ϕ 𝑥𝑗

which leads to the following in the Lagrance-transformed optimization problem:

L α = σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖,𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 𝐾 𝑥𝑖 , 𝑥𝑗

Now we use a kernel function 𝑲 𝒙𝒊, 𝒙𝒋 that returns a value for each pair of 𝒙𝒋

and 𝒙𝒋 has a parameter that can be tuned during training.

The kernel trick

Support vector machines (SVM)
Non-linear decision functions

Prof. Dr. Andreas Theissler

Two widely used kernel functions are

• polynomial kernel:

𝐾 𝑥𝑖 , 𝑥𝑗 = (𝑥𝑖 𝑥𝑗 + 𝑟)𝑑

sometimes with scaling parameter 𝛾 : 𝐾 𝑥𝑖 , 𝑥𝑗 = (𝛾𝑥𝑖 𝑥𝑗 + 𝑟)𝑑

• radial basis function kernel (Gaussian):

𝐾 𝑥𝑖 , 𝑥𝑗 = 𝑒
−

||𝑥𝑖−𝑥𝑗||2

2𝜎2 = 𝑒−𝛾||𝑥𝑖−𝑥𝑗||2
 where 𝛾 =

1

2𝜎2

• For non-linear problems one typically starts with the radial basis function (RBF) kernel.

the kernel parameter is a hyperparameter

Kernel functions

split into training and test set

train_data, test_data, train_labels, test_labels = train_test_split(

 data, labels, test_size = 0.5, random_state=123)

z-score scaling: determine scaling parameters

scaler = StandardScaler().fit(train_data)

scale train set and test set

train_data = scaler.transform(train_data)

test_data = scaler.transform(test_data)

soft-margin SVM with RBF kernel

gamma="auto": SVC tries to set a good value

model = SVC(kernel = "rbf", gamma = "auto", C = 1)

train model on training set

model.fit(train_data, train_labels)

classification of test set

predictions = model.predict(test_data)

Prof. Dr. Andreas Theissler

Support vector machines (SVM)
Non-linear decision functions

71

Support vector machines (SVM)
Non-linear decision functions

Prof. Dr. Andreas Theissler

Usually soft-margin SVMs with non-linear kernels like the RBF kernel are

used.

During training the parameter 𝐶 and the kernel parameter (σ for the RBF

kernel) are tuned so that the training data is separated with a low error

rate.

Looking at classification results in the original feature space, it can be

seen that this type of SVM finds non-linear decision functions.

Training and test of soft-margin SVMs with kernels

Support vector machines (SVM)

Prof. Dr. Andreas Theissler

Support vector machines

advantages +

• robustness: robust against noise in
the training set if soft-margin SVMs
are used

• highly-flexible decision boundary is
kernel trick is used

• global optimum is found (for a given
set of hyperparameters)

• no random parts involved, in contrast
to ANNs

disadvantages -

• in the standard case works only for
numeric data
(data transformation or specific
kernels required)

• interpretability: poor interpretability, if
the data is mapped to higher-
dimensional space

Perceptron – a simple artificial neural network: overview

 one trivial artificial neural network consists of one node („neuron“) with multiple

inputs and one output

 proposed by Rosenblatt in 1957 (see e.g. (Geron, 18) chapter 10)

 can be used for linear classification of two classes („binary classification“)

 data is passed to the input, one dimension/attribute per input

 e.g. input could be height, width, colour value of apples and pears

 the output is the classification result

 e.g. output could be: „it‘s an apple“ or „it‘s a pear“

Prof. Dr. Andreas Theissler 74

Artificial neural networks

Fundamentals: Perceptron

𝑜𝑢𝑡𝑝𝑢𝑡 𝑦

𝑥1

𝑥2

𝑥3

Artificial neural networks

Fundamentals

Simple activation function: heavyside function

 𝑓 𝑥 = ቊ
0 𝑖𝑓 𝑥 < 0
1 𝑖𝑓 𝑥 ≥ 0

 ℝ → 0,1

 if the sum of of the network‘s weighted inputs is >0, the output is 1

 otherwise the output is 0

 an output of 0 or 1 allows to classify data into two classes based on inputs

75Prof. Dr. Andreas Theissler

In a nutshell: Perceptron – a simple artificial neural networks:

 can be used for linear classification of two classes („binary classification“)

 data is passed to the input, one dimension/attribute per input

 output is the classification result

▪ the inputs of each node 𝑥𝑖 are weighted with 𝑤𝑖 and summed up:

෍

𝑖=1

𝑛

𝑤𝑖 𝑥𝑖

▪ the sum is passed as to a so-called activation function 𝑓()

(e.g. heavyside) and 𝑓(𝑥) is the node‘s output

𝑜𝑢𝑡𝑝𝑢𝑡𝑖 = 𝑓(෍

𝑖=1

𝑛

𝑤𝑖 𝑥𝑖)

Prof. Dr. Andreas Theissler 76

Classification

Fundamentals

𝑜𝑢𝑡𝑝𝑢𝑡

𝑥1

𝑥2

𝑥3

𝑤2

𝑤3

𝑤1

𝑓(Σ)

Artificial neural networks

Fundamentals

Exercise: Calculations with perceptron

Calculate the neural networks output for the following inputs:

 input:

 data point 1: (2, 1, 4)

 data point 2: (1 , 2, 1)

 output:

 0 for class 0 (e.g. apple)

 1 for class 1 (e.g. pear)

 weights: (0.5 , 1.5 , -1.0)

 activation function: heavyside

77Prof. Dr. Andreas Theissler

The bias term

▪ in most networks a so-called bias is added to each node

▪ the bias functions like an offset, it allows to change the output independently of the node‘s inputs

▪ geometrically it is the intercept of a plane described by 𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 …

The formula of the weighted sum changes to

𝑤1 ∗ 𝑥1 + 𝑤2 ∗ 𝑥2 + 𝑤3 ∗ 𝑥3 + 𝑏𝑘 = 𝑏𝑘 + ෍

𝑖=1

𝑛

𝑤𝑖 𝑥𝑖

The output is now given by

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑏𝑘+ ෍

𝑖=1

𝑛

𝑤𝑖 𝑥𝑖)

Prof. Dr. Andreas Theissler 78

Artificial neural networks

Fundamentals

𝑜𝑢𝑡𝑝𝑢𝑡

𝑥1

𝑥2

𝑥3

𝑤2

𝑤3

𝑤1

𝑓(Σ)

𝑏𝑖𝑎𝑠: 𝑏𝑘

Vector form with bias term incorporated into vectors

Sometime in literature the bias term 𝑏𝑘 is incorporated into the vector of weights as

𝑤0 and the vector 𝒙 is enhanced by 𝑥0 = 1 .

This allows for a more compact formulation:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝒘𝒙)

▪ where 𝒘 is the vector
𝑤0
𝑤1
𝑤2
𝑤3

 and 𝒙 is the vector
𝑥0
𝑥1
𝑥2
𝑥3

Prof. Dr. Andreas Theissler 79

Classification

Fundamentals

𝑜𝑢𝑡𝑝𝑢𝑡

𝑥1

𝑥2

𝑥3

𝑤2

𝑤3

𝑤1

𝑓(Σ)

𝑥0= 1

𝑏𝑖𝑎𝑠: 𝑏𝑘 = 𝑤0

Perceptron for more than two classes:

▪ one node can be used to separate two classes

▪ for more than two classes: one output node per class is used

➢ one output node corresponds to one class, decision is taken by selecting the maximum

output value

➢ the ANN is now a linear classifier for multiple classes

Prof. Dr. Andreas Theissler 80

Artificial neural networks

Perceptron for multiple classes

example:
 f1 = 7 cm ; f2 = 6 cm

example:

outut for apple = 1,0,0

output for pear pear = 0,1,0

x1

x2

apple

pear

b3

b1

banana

b2

Artificial neural networks

Activation functions

Activation functions

The heavyside activation function 𝑓 𝑥 = ቊ
0 𝑖𝑓 𝑥 < 0
1 𝑖𝑓 𝑥 ≥ 0

was used in early networks.

However, only linear classifiers can be built based on that function.

A variety of activation functions have been proposed and used since. Some of them

are:

 linear

 logistic (a sigmoid function)

 tangens hyperbolicus tanh (a sigmoid function)

 rectifier (the unit is then called called ReLU = rectified linear unit)

 Different activation functions can be used in layers of the network

81Prof. Dr. Andreas Theissler

Artificial neural networks

Activation functions

Activation functions: linear

linear

 ℝ → ℝ; 𝑓 𝑥 = 𝑥

82Prof. Dr. Andreas Theissler

Artificial neural networks

Activation functions

Activation functions: sigmoid functions

sigmoid functions are S-shaped

they are differantiable

 logistic:

 ℝ → (0,1); 𝑓 𝑥 =
1

1+𝑒−𝑥

 tanh:

 ℝ → (−1, +1); 𝑓 𝑥 = tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

 sigmoid functions were used many years, and still are used

 they have problems when using many layers

(not covered in this course, yet)

83Prof. Dr. Andreas Theissler

Activation functions: sigmoid functions

 as can be seen, sigmoid functions

fulfill a non-linear mapping of inputs

to outputs

 the decision function with n parallel

nodes is, however, still linear!

Prof. Dr. Andreas Theissler 84

Artificial neural networks

Activation functions

Building an ANN:

▪ several neurons (nodes) in parallel are one layer

▪ several layers are connected sequentially

▪ prediction according to outputs at output layer

(note: a two-class problem can be solved with one or two output nodes)

▪ by connecting the neurons

➢ a „network“ is set up: the „artificial neural network“

Prof. Dr. Andreas Theissler 85

Artificial neural networks

Multilayer perceptron (MLP)

Input data is passed to the

input layer

Example:
 f1 = 7 cm ; f2 = 6 cm

The output layer outputs the

results

example:

apple = 0.7

pear = 0.2

banana= 0.1

=> prediction = max output: appleinput layer hidden layer output layer

f1

f2

apple

pear

banana

„Machine learning“ by an ANN:

▪ adaptation of the weights 𝑤𝑖, such that for input data the ANN takes the correct decision,

i.e. output corresponds to class labels

(technique: „backpropagation“)

▪ iterative improvement by using many repetitions on the training set

▪ one run on the entire training set is called an epoch, very many epochs are required

 example: input: (8 cm ; 7 cm) + „apple“ => output: apple = 0,2 ; pear = 0,8, banana = 0,0

➢ adaptation of weights 𝑤𝑖, such that classification is correct

(goal: apple = 1 ; pear = 0; banana = 0)

Prof. Dr. Andreas Theissler 86

Artificial neural networks

Functioning of ANNs: overview

Input data is passed to the

input layer

Example:
 f1 = 7 cm ; f2 = 6 cm

The output layer outputs the

results

example:

apple = 0.7

pear = 0.2

banana= 0.1

 => prediction: appleinput layer hidden layer output layer

f1

f2

apple

pear

banana

Typical traditional ANN – the multi-layer perceptron (MLP)

There is an enormous variety of neural networks, the „traditional“ type that is

typically used is as follows:

 feed-forward multilayer perceptron:

 „feed-forward“: the information flow is strictly from left to right

 „multilayer perceptron“: consists of multiple layers of perceptrons

 activation function: logistic or tanh

 training using backpropagation

➢ artificial neural networks have recently become highly relevant again in the field

of deep learning, where so-called deep neural networks are used

➢ in principle these deep neural networks work similar as shown here, but use

some advancements

Prof. Dr. Andreas Theissler 87

Artificial neural networks

Functioning of ANNs: overview

Artificial neural networks

Functioning of ANNs: overview

Prof. Dr. Andreas Theissler

Artificial neural networks (ANNs)

advantages +

• robustness: robust against noise in
the training set

• accuracy: highly flexible decision
boundaries

• can be used for different tasks
besides classification, e.g.
forecasting, regression

disadvantages -

• scalability: long training period

• interpretability: poor interpretability,
the result of the training is a
vector/matrix of weights

• network-structure and learning rate
has to be pre-redefined

• random parts involved (e.g.
initialization of weights)

• global minimum not guaranteed with
the standard backpropation gradient-
descent

 backpropagation is used for parameter tuning, where the parameters are

the weights including the biases

 backpropagation uses gradient descent

(dt. Gradientenabstiegsverfahren)

 the error at the output layer is iteratively reduced

 the weights are randomly initialized and tuned during the training

process

 the weights are changed in a way to reduce the error at the output layer

Prof. Dr. Andreas Theissler 89

Artificial neural networks (ANNs)

Backpropagation

 in order to be able to reduce the error, the error needs to be calculated

 this is done using an error function also called loss function

 one common loss function is the „mean sum of squared errors“ MSE:

𝐸 =
1

𝑚
෍

𝑖=1

𝑚

(ෝ𝒚𝒊 − 𝒚𝒊)
2

 where 𝒚𝒊 is a vector with the label of the data point 𝑖, ෝ𝒚𝒊 is the networks output

(prediction) for data point 𝑖, and 𝑚 is the number of data points

 ෝ𝒚𝒊 is a function of the weights

 note: there are other loss functions

Prof. Dr. Andreas Theissler 90

Artificial neural networks (ANNs)

Backpropagation

One-hot encoding

 in the loss function, 𝒚𝒊 is required to be a vector in order to be comparable to the networks

output

 this is achieved by transforming the labels using one-hot encoding

 the class label then corresponds to the desired network output

For this example ANN:

 the one-hot encoded labels are apple =
1
0
0

, pear=
0
1
0

, banana =
0
0
1

 predictions (outputs) are floating point numbers,

 e.g. for apple i.e. apple =
0.8
0.1
0.1

 or
0.6
0.2
0.2

 the goal is an output that is close to the one-hot encoded label,

i.e. for an apple close to
1
0
0

Prof. Dr. Andreas Theissler 91

Artificial neural networks (ANNs)

Backpropagation

f1

f2

apple

pear

banana

 when the loss function 𝐸 = 0, the output for all data points corresponds to the

class labels

 𝐸 = 0 is unlikely to be achieved

 note that correct predictions are possible without 𝐸 = 0:

Example:

 an ANN shall have an output node for apple, pear and banana

 the output for one data point 𝑥𝑖, which is an apple, shall be
0.8
0.1
0.1

 decision will be apple

Exercise: What is the error for this data point ?

𝐸𝑖 = (ෝ𝒚𝒊 − 𝒚𝒊)
2

= 𝑠𝑢𝑚(
0.8
0.1
0.1

−
1
0
0

)2 = (0.8 − 1)2 +(0.1 − 0)2+(0.1 − 0)2= 0.06

Prof. Dr. Andreas Theissler 92

Artificial neural networks (ANNs)

Backpropagation

 backpropagation uses gradient descent

 for a very simplified network:

 one input

 one output

 „trained“ with one data point

 ignoring the activation function (or assuming a linear activation function y=x)

 for this simplified example with one data point the loss function

𝐸 =
1

𝑚
σ𝑖=1

𝑚 (ෝ𝒚𝒊 − 𝒚𝒊)
2

can be rewritten with ෝ𝑦𝑖 = 𝑤1𝑥1:

𝐸 = (𝑤1𝑥1 − 𝑦1)2

 so the error is a function of the weight, 𝑥1 and 𝑦1 are constant

 we want this error to be minimal

Prof. Dr. Andreas Theissler 93

Artificial neural networks (ANNs)

Backpropagation: Gradient descent with simplified example

ො𝑦𝑥1 𝑤1

The loss function

𝐸 = (𝑤1𝑥1 − 𝑦1)2

is obivously a quadratic function

 We want to find the error function‘s minimum

 We can use the function‘s derivative and find the value of 𝑤1, where the

function is 0

Prof. Dr. Andreas Theissler 94

Artificial neural networks (ANNs)

Backpropagation: Gradient descent with simplified example

Using the chain rule (dt. Kettenregel)

 𝑓 𝑥 = 𝑔 ℎ 𝑥 → 𝑓′ 𝑥 = 𝑔′ ℎ 𝑥 ∗ ℎ′(𝑥)

we find the derivative of

𝐸 = (𝑤1𝑥1 − 𝑦1)2

to be

𝐸′ = 2 ∗ 𝑤1𝑥1 − 𝑦1 ∗ 𝑥1

 during training we do not know all function values, we only know 𝐸 for the current

input 𝑥1 and the current value of weight 𝑤1

 starting with a random 𝑤1 we want to change 𝑤1 in a way that minimizes 𝐸

Prof. Dr. Andreas Theissler 95

Artificial neural networks (ANNs)

Backpropagation: Gradient descent with simplified example

We know the type of error function (quadratic in our example)

So we can calculate 𝐸 (𝑤1) and use the gradient 𝐸′(𝑤1) to find the direction and the extent of

the desired change of 𝑤

 the gradient yields the direction and the extent of the weight update that reduces 𝐸

Prof. Dr. Andreas Theissler 96

Artificial neural networks (ANNs)

Backpropagation: Gradient descent with simplified example

gradient of the error

function at starting point

Learning rate

To control the extent of the weight update we introduce a learning rate 𝜂 ∈ 0,1

The weights are iteratively (step-wise) changed as follows:

𝑤(𝑠𝑡𝑒𝑝 𝑡+1) = 𝑤(𝑠𝑡𝑒𝑝 𝑡) − 𝜂 ∗ 𝐸′(𝑤(𝑠𝑡𝑒𝑝 𝑡))

 the learning rate regulates the trade-off between convergence speed and the

stability of the process to converge

 the learning rate is a hyperparameter

 for small networks a constant learning rate of 0.1 is commonly used

Prof. Dr. Andreas Theissler 97

Artificial neural networks (ANNs)

Backpropagation: Gradient descent with simplified example

Example: gradient descent

 in our example let 𝑥1 = 1 and 𝑦1 = 1, 𝜂 = 0.1

 in other words for an input of 1 we want the
network‘s output to be 1

 (note that 𝑤1 = 1 is the obvious solution)

Starting with a random 𝑤1 = 3, the error in the first
step is:

𝐸 𝑤1 = (𝑤1𝑥1 − 𝑦1)2

= (3 ∗ 1 − 1)2= 4

the gradient for 𝑤1 = 3 is

𝐸′ 𝑤1 = 2 ∗ 𝑤1𝑥1 − 𝑦1 ∗ 𝑥1

= 2 ∗ 3 ∗ 1 − 1 ∗ 1 = 4

We can calculate the weight of the next step:

𝑤(𝑠𝑡𝑒𝑝 𝑡+1) = 𝑤(𝑠𝑡𝑒𝑝 𝑡) − 𝜂 ∗ 𝐸′ 𝑤 𝑠𝑡𝑒𝑝 𝑡

𝑤(𝑠𝑡𝑒𝑝 𝑡+1) = 3 − 0.1 ∗ 4 = 2.6

steps of gradient descent:

Prof. Dr. Andreas Theissler 98

Artificial neural networks (ANNs)

Backpropagation: Gradient descent with simplified example

step 𝑤1 𝐸

1 3 4

2 2.6 2.56

3 2.28 1.63

4 2.02 1.04

5 1.82 0.67

6 1.65 0.43

 higher learning rates lead to faster changes

 step might be so large that minimum is over-stepped

 then the next step will change the weight in the opposite direction

 oscillation is possible

 might diverge instead of converge

Prof. Dr. Andreas Theissler 99

Artificial neural networks (ANNs)

Backpropagation: Gradient descent with simplified example

Backpropagation on multiple layers

In the loss function

𝐸 =
1

𝑚
෍

𝑖=1

𝑚

(ෝ𝒚𝒊 − 𝒚𝒊)
2

ෝ𝒚𝒊 is the vector of the output layer, e.g.
0.8
0.1
0.1

 each component of this vector is given by the weighted sum of that node‘s inputs

with the activation function applied, i.e. 𝑓(𝒘𝒙) = 𝑓(σ𝑖=0
𝑛 𝑤𝑖 𝑥𝑖)

 this is recursive, i.e. a node‘s output in layer N depends on the node‘s inputs,

which depend on the nodes‘ outputs of layer N-1, ...

 in addition to the previous simplified example, the derivative of the activation

function is incorporated into the gradient descent steps

Prof. Dr. Andreas Theissler 100

Artificial neural networks (ANNs)

Training with backpropagation

Backpropagation – a „quick generalization“ to multiple layers

In the loss function

𝐸 =
1

𝑚
෍

𝑖=1

𝑚

(ෝ𝒚𝒊 − 𝒚𝒊)
2

ෝ𝒚𝒊 is the vector of the output layer, e.g.
0.8
0.1
0.1

 each component of this vector is given by the weighted sum of that node‘s inputs

with the activation function applied, i.e. 𝑓(𝒘𝒙) = 𝑓(σ𝑖=0
𝑛 𝑤𝑖 𝑥𝑖)

 this is recursive, i.e. a node‘s output in layer N depends on the node‘s inputs,

which depend on the nodes‘ outputs of layer N-1, ...

 in addition to the previous simplified example, the derivative of the activation

function is incorporated into the gradient descent steps

Prof. Dr. Andreas Theissler 101

Artificial neural networks (ANNs)

Training with backpropagation

Prof. Dr. Andreas Theissler 102

Artificial neural networks (ANNs)

Some common loss functions for classification

The weights of all nodes need to be tuned in order to reduce the error

Each iteration of backpropagation has the following two steps:

1. forward propagation: the data is passed to the input layer and the error is calculated at the

output layer for all passed data points

2. using gradient descent, the weights of all nodes in all layers are changed using gradient

descent

 one iteration with all data points is called an epoch

 this process is repeated many times, typically thousands of iterations

Prof. Dr. Andreas Theissler 103

Artificial neural networks (ANNs)

Training with backpropagation

f1

f2

apple

pear

banana

forward propagation

backward propagation

An ANN has a high number of weights

 so the function to be optimized is not as simple as shown in the example for one weight by

the quadratic function

 it is a function of very many variables

The process, however, is the same:

 the function‘s gradient is calculated in order to determine the direction and extent the of the

weight update

 instead of the derivative, the partial derivatives are used

One can imagine that process for two variables as a skate bowl, where we roll a ball and we

want it to stop at the minimum:

Prof. Dr. Andreas Theissler 104

Artificial neural networks (ANNs)

Training with backpropagation

im
a
g
e
:

C
O

N
C

R
E

T
E

S
K

A
T

E
P

A
R

K
S

D
e
s
ig

n
 a

n
d
 c

o
n
s
tr

u
c
ti
o

n

o
f

a
 s

k
a
te

b
o
a
rd

in
g
 r

e
c
re

a
ti
o

n
a
l
fa

c
ili

ty
.

B
a
c
h
e
lo

r
T

h
e
s
is

,
T

e
o
d
o
r

D
a
s
k
a
lo

v

split into training and test set

train_data, test_data, train_labels, test_labels = train_test_split(

 data, labels, test_size = 0.5, random_state=123)

z-score scaling: determine scaling parameters

scaler = StandardScaler().fit(train_data)

scale train set and test set

train_data = scaler.transform(train_data)

test_data = scaler.transform(test_data)

create neural network

model = MLPClassifier(hidden_layer_sizes=(20,20,),

 activation='relu', solver='adam', max_iter=1000,

 learning_rate_init=0.001, momentum=0.9)

train model on training set

model.fit(train_data, train_labels)

classification of test set

predictions = model.predict(test_data)

Prof. Dr. Andreas Theissler

Artificial neural networks (ANNs)

105

Deep Learning – an overview

Deep Learning uses ANNs as we have seen them so far, with some

advancements

 more layers

 other activation functions

 advanced training methods

 additional methods to avoid overfitting

 Deep Learning needs a lot of training data and requires long training

 the basic idea is not to do feature engineering, but let the Deep

ANN determine the features it requires to separate the data points

Prof. Dr. Andreas Theissler

Artificial neural networks (ANNs)

Deep Learning

106

Deep Learning – an overview

in addition: Deep Learning uses network architectures for specific data

types, e.g.

 CNNs for images

 RNNs for time series or text

In general: The distinction between „Deep Learning“ and ANNs without

Deep Learning is not too strict. Many ideas have been around before the

term Deep Learning was introduced.

Prof. Dr. Andreas Theissler

Artificial neural networks (ANNs)

Deep Learning

107

In order to monitor the process during training, the ANNs error in the current step is

calculated not only on the training set, but on a so-called validation set

this is an approach to try to detect overfitting

▪ this validation set is split from the initial training set

▪ during a step multiple validation sets can be extracted using “cross-validation“

▪ Recommendation: a „blind test set“ should still be kept,

i.e. validation set is not the same as the test set

▪ the blind test set can be used as a final quality gate

after the training process

Prof. Dr. Andreas Theissler 108

Artificial neural networks (ANNs)

Avoiding overfitting

training

validation

test

Early stopping

 observation: - error on training set (train error, train loss) decreases

 - error on validation set (test error, test loss) decreases up to some point

 after that point, the error on the test set increases => overfitting

 idea: stop training when overfitting starts („early stopping“)

 stop training when error on validation set (validation error, validation loss) increases

 since the errors are not as stable as shown here, the errors are monitored during training and

training is stopped after a „stable“ increase of the validation error

Prof. Dr. Andreas Theissler 109

Artificial neural networks (ANNs)

Avoiding overfitting: early stopping

iteration

e
rr

o
r error

validation set

error

training set

overfitting

Avoiding overfitting
Ensemble

„Ensemble“ – combining several models

 observation: each model has different strenghts and weaknesses,

 i.e. each model may overfit differently

 idea: combining many different models („ensemble“)

 Some options:

▪ ANNs with different architectures (number of layers, number of nodes, etc.)

▪ same ANN architecture trained on different subsets of the data, hence the weights 𝑤𝑖 will

be different

110

Final result: majority voting

Example:

ANN 1: „apple“

ANN 2: „pear“ = „apple“

ANN 3: „apple“

data

ANN 1

ANN 2

ANN n

voter
...

Prof. Dr. Andreas Theissler

Avoiding overfitting
Dropout

Dropout

 observation: the idea of an „ensemble“ ist good,

 but is computationally expensive and requires a lot of training data

 idea: use different representations of the same ANN

 Functioning:

▪ for each data point („feature vector“), randomly deactivate nodes and their connections

▪ deactive nodes with some probability, e.g. p=20% in input layer, p=50% in hidden layer

▪ when using the network to predict data, all nodes are active

111

: active node

 : inactive node

Prof. Dr. Andreas Theissler

Avoiding overfitting

▪ There are more techniques to avoid overfitting, e.g. L1-regularization, L2-

regularization

▪ Recommendation:

 early stopping: is typically used

 ensemble: depends on the availability of data and computational power

 dropout: is typically used, particularly when for ANNs with many layers

 A combination of multiple techniques is often used, e.g. early stopping

and dropout

112Prof. Dr. Andreas Theissler

Activation functions for Deep ANNs

▪ commonly used activation functions: instead of logistic function Deep ANNs use rectifier

functions (and variants of it)

 rectifier: ℝ → 0, ∞ ; 𝑓 𝑥 = 𝑚𝑎𝑥(0, 𝑥)

 the activation function is called rectifier, the unit is then called called ReLU (rectified linear unit)

 (these terms are often used as equivalents also they are not)

113Prof. Dr. Andreas Theissler

Activation functions for Deep ANNs

Softmax function

For classification problems, the output layer typically uses the softmax activation function

▪ This function scales the values such that the sum of all output nodes is 1

▪ The output of one node can then be interpreted as a probability

Example: output might be at the nodes:

 apple: 0.7 , pear: 0.2 , banana: 0.1

 so the ANN predicts that the data point is an apple with a probability of 0.7

114Prof. Dr. Andreas Theissler

input layer hidden layer output layer

f1

f2

apple

pear

banana

 Deep Learning requires a large training set

 Epoch learning, i.e. adapring the weights after having seen all data points,

would not converge, since it would take very long

 Mini-batch updating is used

mini-batch updating (=stochastic gradient descent (SGD) with batch size > 1):

 a small number of random samples (e.g. 50) are taken from the training set

 the mean error is calculated (summing up the errors and dividing by the number

of data points)

 the weights are updated

 faster update of weights, but updates depend only on a small subset of the data

 common approach for Deep Learning

Prof. Dr. Andreas Theissler 115

Training Artificial neural networks (ANNs)
Using mini-batches

Momentum optimization

For smaller batch sizes (mini-batch updating or case updating), the change of

weights might be instable

A momentum term can be introduced, that incorporates the previous weight update

into the current weight update

i.e. if the weights were rapidly updated in positive direction and the current batch

indicates an update in negative direction, this change of direction is smoothed

𝑤(𝑠𝑡𝑒𝑝 𝑡+1) = 𝑤(𝑠𝑡𝑒𝑝 𝑡) − (𝛽𝑚 + 𝜂𝐸′(𝑤(𝑠𝑡𝑒𝑝 𝑡)))

 where 𝑚 is a vector with the previous gradients

 and 𝛽 is a hyperparameter between 0 and 1 (0 = no momentum, 1 = maximal

momentum). A common value for 𝛽 is 0.9.

Prof. Dr. Andreas Theissler 116

Training Artificial neural networks (ANNs)

Enhancement: momentun optimization

Learning rate decay / adaptive learning rate

 The learning rate 𝜂 can be gradually decreased during the training process

 This allows to take large steps at the beginning and finer steps towards the end

of the training process

 enhanced versions of backpropagation that use an adaptive learning rate are

AdaGrad and RMSProp

Learning rate decay / adaptive learning rate + momentum optimization

 momentum optimization and adaptive learning rate is combined in ADAM

(Adaptive momentum estimation)

Prof. Dr. Andreas Theissler 117

Training Artificial neural networks (ANNs)

Enhancement: Learning rate decay / adaptive learning

[…]

train test split

train_data, test_data, train_labels_raw, test_labels_raw = train_test_split(

data, labels_raw, test_size = 0.5)

scaler = StandardScaler().fit(train_data) # z-score

train_data = scaler.transform(train_data)

test_data = scaler.transform(test_data)

one-hot-encoding of the labels is required for neural networks

i.e. instead of labels 1,2,3 => vectors (1 0 0), (0 1 0), (0 0 1)

def encodeLabelsOneHot(in_labels):

labels_onehot = to_categorical(in_labels)

return labels_onehot

train_labels = encodeLabelsOneHot(train_labels_raw) # call own function

test_labels = encodeLabelsOneHot(test_labels_raw) # call own function

#extract number of features and classes

n_attributes = data.shape[1]

n_classes = train_labels.shape[1]

Prof. Dr. Andreas Theissler 118

Artificial neural networks (ANNs)

Programming with tensorflow / keras

#create neural network, see API reference e.g.: https://keras.io/

model = Sequential()

#input layer is created implictly, based on input_dim

model.add(Dense(units=20, activation='tanh', input_dim=n_attributes)) #hidden layer

model.add(Dense(units=10, activation='tanh')) #hidden layer

model.add(Dense(units=n_classes, activation='softmax')) #output layer

optim = Adam()

model.compile(loss='mean_squared_error', optimizer=optim, metrics=['accuracy'])

train the model

model.fit(train_data, train_labels, batch_size=20, epochs=100)

classification of test set

pred = model.predict(test_data)

get from network outputs to classes

predictions = np.argmax(model.predict(test_data), axis=-1)

cm = confusion_matrix(test_labels_raw, predictions)

Prof. Dr. Andreas Theissler 119

Artificial neural networks (ANNs)

Programming with tensorflow / keras

Experimenting with ANNs

120

• https://playground.tensorflow.org

• https://js.tensorflow.org/

Experimental environments

• Pre-installed environments available

• easy to use GPUs or TPUs

Cloud-based services

Prof. Dr. Andreas Theissler

-10 -5 0 5 10

-1
0

-5
0

5
1
0

x

y

Classfication: test

Prof. Dr. Andreas Theissler

Possible answers:

• Does the selected feature space allow us to get good

results?

• From the plot above it becomes obvious that any classifier

will ouput weak results using this one feature.

• Did we scale the features?

• If not, the features are weighted differently.

• Have we used instances from the training set to

determine the classifier‘s accuracy?

• In that case we get very good results after training, and

possibly very weak results on unseen data.

training set

test set

Question:

What could be reasons for a classifier to output very weak results?

 multi-class problem: 11 fault types, i.e. 11 classes

 48 features

 approx. 50.000 feature vectors

Prof. Dr. Andreas Theissler 122

Case Study

Classification of fault types in electromagnetic drive systems

runtime of XGBoost

with a growing number of

used features

accuracy of different classifiers

on unscaled and scaled input data

Grüner, T., Böllhoff, F., Meisetschläger, R., Vydrenko, A., Bator, M., Dicks, A., & Theissler, A. (2020).

Evaluation of Machine Learning for Sensorless Detection and Classification of Faults in Electromechanical Drive Systems.

Proceedings 24th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Procedia

Computer Science, Volume 176, pages 1586-1595, 2020, Elsevier. ISSN 1877-0509

https://doi.org/10.1016/j.procs.2020.09.170

https://doi.org/10.1016/j.procs.2020.09.170

 decision trees can get messy…

Prof. Dr. Andreas Theissler 123

Case Study

Classification of fault types in electromagnetic drive systems

XGBoost

 classification with a subset of features

 features are selected based on feature importance by XGBoost

Prof. Dr. Andreas Theissler 124

Case Study

Classification of fault types in electromagnetic drive systems

XGBoost:

using feature importance to select subset of features

Further readings

Machine Learning + Deep Learning:

 J. Han, M. Kamber, J. Pei (2011). Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann

Publishers, 3rd Edition. ISBN 978-0123814791

 Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Education

(ISE Editions).

 A. Theissler (2013). Detecting anomalies in multivariate time series from automotive systems. PhD Thesis. Brunel University London

 Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition, Fourth Edition.Academic Press, 4th edition.

 “Deep Learning” (2016).

Ian Goodfellow, Yoshua Bengio, Aaron Courville. kostenfrei online: www.deeplearningbook.org

 J. Han, M. Kamber, J. Pei. Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann

Publishers

 Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Education

 Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition, Fourth Edition. Academic Press

 Breimann (2001). Random Forests

https://link.springer.com/article/10.1023/A:1010933404324

 Friedman, J.H. (2000), Greedy Function Approximation: A Gradient Boosting Machine.

Annals of Statistics, year = 2000, volume = {29}, pages = {1189--1232}

 Chen, Tianqi and Guestrin, Carlos (2016), XGBoost: A Scalable Tree Boosting System.

Proceedings of the 22nd ACM SIGKDD 2016

https://doi.org/10.1145/2939672.2939785

Papers on Overfitting:

 „Dropout: A Simple Way to Prevent Neural Networks from Overfitting“ (2014)

 Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan

 Journal Machine Learning Research. Jan. 2014, Vol. 15, Number 1, pages 1929-1958

 „Ensemble based systems in decision making“ (2006)

Robert Polikar, IEEE Circuits and Systems Magazine. 2006, Vol. 6, Issue 3, pages 21-45

125Prof. Dr. Andreas Theissler

https://link.springer.com/article/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785

	Folie 1: Seminar Grundlagen Machine Learning Methoden und Algorithmen zur praktischen Umsetzung mit Python
	Folie 2: Fundamentals Defining classification
	Folie 3: Fundamentals Defining classification
	Folie 4: Fundamentals: Machine Learning – on one slide Classification of apples and pears
	Folie 5: Fundamentals Machine learning
	Folie 6: Fundamentals Machine learning
	Folie 7: Fundamentals Statistical background
	Folie 8: Fundamentals Machine learning
	Folie 9: Fundamentals Machine learning: classification
	Folie 10: Fundamentals Classification results
	Folie 11: Fundamentals Classification results
	Folie 12: Fundamentals Classification results
	Folie 13: Artificial neural networks (ANNs) Overfitting and underfitting
	Folie 14: Classifiers Linear classifiers
	Folie 15: Classifiers Non-linear classifiers
	Folie 16: Classifiers Non-linear classifiers
	Folie 17: Classifiers Non-linear classifiers
	Folie 18: Classifiers Non-linear classifiers
	Folie 19: Classifiers Non-linear classifiers
	Folie 20: Classifiers Non-linear classifiers
	Folie 21: Classifiers Non-linear classifiers
	Folie 22: Classifiers k-nearest neighbours (k-NN)
	Folie 23: Classifiers k-nearest neighbours (k-NN)
	Folie 24: Classifiers Non-linear classifiers
	Folie 25: Decision trees
	Folie 26: Decision trees
	Folie 27: Classifiers Non-linear classifiers
	Folie 28: Decision trees Splitting criterion: information gain
	Folie 29: Decision trees Splitting criterion: information gain
	Folie 30: Decision trees Splitting criterion: information gain
	Folie 31: Decision trees Splitting criterion: Gini index
	Folie 32: Decision trees Splitting criterion: Gini index
	Folie 33: Decision trees Splitting criterion: Gini index
	Folie 34: Decision trees Splitting criteria
	Folie 35: Decision trees scikit-learn
	Folie 36: Decision trees scikit-learn
	Folie 37: Decision trees scikit-learn
	Folie 38: Decision trees Evaluation
	Folie 39: Random forests (Breiman, 2001)
	Folie 40: Random forests
	Folie 41: Random forests
	Folie 42: Random forests Evaluation
	Folie 43: Random forests scikit-learn
	Folie 44: Random forests scikit-learn
	Folie 45: Gradient boosting machines
	Folie 46: Gradient boosting machines Boosting
	Folie 47: Gradient boosting machines XGBoost (Extreme Gradient Boosting) (Chen and Guestrin, 2016)
	Folie 48: Gradient boosting machines XGBoost (Extreme Gradient Boosting)
	Folie 49: XGBoost Evaluation
	Folie 50: XGBoost Python module xgboost
	Folie 51: XGBoost Python module xgboost + scikit-learn
	Folie 52: Support vector machines (SVM) Introduction
	Folie 53: Support vector machines (SVM) Introduction
	Folie 54: Support vector machines (SVM) Introduction
	Folie 55: Support vector machines (SVM) Introduction
	Folie 56: Support vector machines (SVM) Expressing the decision function
	Folie 57: Support vector machines (SVM) Expressing the decision function
	Folie 58: Support vector machines (SVM) Expressing the decision function
	Folie 59: Support vector machines (SVM) Finding the optimal decision function
	Folie 60: Support vector machines (SVM) Finding the optimal decision function
	Folie 61: Support vector machines (SVM) Finding the optimal decision function
	Folie 62: Support vector machines (SVM) Soft-margin SVM
	Folie 63: Support vector machines (SVM) Soft-margin SVM
	Folie 64: Support vector machines (SVM) Soft-margin SVM
	Folie 65: Support vector machines (SVM) Non-linear decision functions
	Folie 66: Support vector machines (SVM) Non-linear decision functions
	Folie 67: Support vector machines (SVM) Non-linear decision functions
	Folie 68: Support vector machines (SVM) Non-linear decision functions
	Folie 69: Support vector machines (SVM) Non-linear decision functions
	Folie 70: Support vector machines (SVM) Non-linear decision functions
	Folie 71: Support vector machines (SVM) Non-linear decision functions
	Folie 72: Support vector machines (SVM) Non-linear decision functions
	Folie 73: Support vector machines (SVM)
	Folie 74: Artificial neural networks Fundamentals: Perceptron
	Folie 75: Artificial neural networks Fundamentals
	Folie 76: Classification Fundamentals
	Folie 77: Artificial neural networks Fundamentals
	Folie 78: Artificial neural networks Fundamentals
	Folie 79: Classification Fundamentals
	Folie 80: Artificial neural networks Perceptron for multiple classes
	Folie 81: Artificial neural networks Activation functions
	Folie 82: Artificial neural networks Activation functions
	Folie 83: Artificial neural networks Activation functions
	Folie 84: Artificial neural networks Activation functions
	Folie 85: Artificial neural networks Multilayer perceptron (MLP)
	Folie 86: Artificial neural networks Functioning of ANNs: overview
	Folie 87: Artificial neural networks Functioning of ANNs: overview
	Folie 88: Artificial neural networks Functioning of ANNs: overview
	Folie 89: Artificial neural networks (ANNs) Backpropagation
	Folie 90: Artificial neural networks (ANNs) Backpropagation
	Folie 91: Artificial neural networks (ANNs) Backpropagation
	Folie 92: Artificial neural networks (ANNs) Backpropagation
	Folie 93: Artificial neural networks (ANNs) Backpropagation: Gradient descent with simplified example
	Folie 94: Artificial neural networks (ANNs) Backpropagation: Gradient descent with simplified example
	Folie 95: Artificial neural networks (ANNs) Backpropagation: Gradient descent with simplified example
	Folie 96: Artificial neural networks (ANNs) Backpropagation: Gradient descent with simplified example
	Folie 97: Artificial neural networks (ANNs) Backpropagation: Gradient descent with simplified example
	Folie 98: Artificial neural networks (ANNs) Backpropagation: Gradient descent with simplified example
	Folie 99: Artificial neural networks (ANNs) Backpropagation: Gradient descent with simplified example
	Folie 100: Artificial neural networks (ANNs) Training with backpropagation
	Folie 101: Artificial neural networks (ANNs) Training with backpropagation
	Folie 102: Artificial neural networks (ANNs) Some common loss functions for classification
	Folie 103: Artificial neural networks (ANNs) Training with backpropagation
	Folie 104: Artificial neural networks (ANNs) Training with backpropagation
	Folie 105: Artificial neural networks (ANNs)
	Folie 106: Artificial neural networks (ANNs) Deep Learning
	Folie 107: Artificial neural networks (ANNs) Deep Learning
	Folie 108: Artificial neural networks (ANNs) Avoiding overfitting
	Folie 109: Artificial neural networks (ANNs) Avoiding overfitting: early stopping
	Folie 110: Avoiding overfitting Ensemble
	Folie 111: Avoiding overfitting Dropout
	Folie 112: Avoiding overfitting
	Folie 113: Activation functions for Deep ANNs
	Folie 114: Activation functions for Deep ANNs
	Folie 115: Training Artificial neural networks (ANNs) Using mini-batches
	Folie 116: Training Artificial neural networks (ANNs) Enhancement: momentun optimization
	Folie 117: Training Artificial neural networks (ANNs) Enhancement: Learning rate decay / adaptive learning
	Folie 118: Artificial neural networks (ANNs) Programming with tensorflow / keras
	Folie 119: Artificial neural networks (ANNs) Programming with tensorflow / keras
	Folie 120: Experimenting with ANNs
	Folie 121: Classfication: test
	Folie 122: Case Study Classification of fault types in electromagnetic drive systems
	Folie 123: Case Study Classification of fault types in electromagnetic drive systems
	Folie 124: Case Study Classification of fault types in electromagnetic drive systems
	Folie 125: Further readings

