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 Introduction into cluster analysis

 Partioning methods

 Hierarchical methods

 (Density-based methods)

 Evaluation of clustering

 Case studies
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Overview
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Introduction to Cluster Analysis

 How would you group/cluster these objects?

[cf. Slides to Chapter 7.1-7.4 in Berthold, Borgelt, et al. – Guide To Intelligent Data Analysis ]

➢ Clustering: 

Find groups (so-called “clusters”) in a set of instances (data objects). 

The groups are not known.
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Introduction to Cluster Analysis

 Solution 1: Shape
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Introduction to Cluster Analysis

 Solution 2: Color



Cluster Analysis (or simply “clustering”):

Partitioning a set of data objects into groups (=clusters), such that:

 data objects within one cluster are similar to each other

 data objects of different clusters are dissimilar to each other

Goal: Discover previously unknown groups within the data.

Clustering is known as unsupervised learning because no information about 

classes is available for the instances.
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Introduction to Cluster Analysis



Examples of applications of cluster analysis:

 group similar documents (search engines, text mining, ...)

 find similar recordings from technical systems 

(automotive, automation, ...)

 group similar pixels in images (image processing)

 find different groups of customers (marketing)

 ...
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Introduction to Cluster Analysis



The most common types of clustering methods are

1. partitioning methods

2. hierarchical methods

3. density-based methods

4. grid-based methods

➢ we will focus on partitioning and hierarchical methods
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Introduction to Cluster Analysis



Partitioning methods:

 find k clusters in the data set  (k has to be pre-defined !)

 each cluster must contain ≥ 1 instances

 each instance must belong to exactly one cluster

 usually distance-based

Steps:

1. Creation of initial partitioning (e.g. randomly).

2. Iterative improvement of the partitioning by moving objects from one cluster 

to another. This is done by optimizing some criterion of what a "good" 

partitioning should look like.

3. Stop, if the partitioning quality criterion is satisfied.
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Partitioning methods
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Partitioning methods

Functioning of k-means

- randomly select k initial cluster centers

- assign instances to closest cluster center

- determine new cluster centers (the clusters‘ „mean“)

- re-assign instances to closest cluster center

- determine new cluster centers

- re-assign instances to closest cluster center

- determine new cluster centers

- re-assign instances to closest cluster center



Evaluation of k-Means

 for a good initialization, “good” clusters are found after few steps

 the result is sensitive to the initial cluster centers that were chosen 

randomly, therefore the clustering is done several times 

(k-Means++ uses a more advanced way of initialization)

 sensitive to outliers since they influence the clusters’ mean values

 we have to be able to calculate the “mean” of a cluster
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Partitioning methods



 https://scikit-learn.org

 In the python library scikit-learn (sklearn) a variety of machine learning methods is 

available

 please refer to the online documentation of the library, with many working examples

https://scikit-learn.org

For example the reference for k-means can be found under:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Machine Learning with Python

scikit-learn

https://scikit-learn.org/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html


The general principle for clustering:

1. imports

2. load data set

3. preprocessing (e.g. scaling)

4. creation of clustering model, for example KMeans (with parameters)

5. the clustering step: using model.fit()

6. analyse cluster results

This is a basic setting. In addition to that data might be plotted, or the entire 

process can be repeated to find the best clustering
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Machine Learning with Python

scikit-learn



# import required modules

import matplotlib.pyplot as plt

from sklearn.datasets import make_blobs

from sklearn.preprocessing import MinMaxScaler

from sklearn.cluster import KMeans

# create data set with four clusters  (for our experiment) 

data, _ = make_blobs(n_samples=200, n_features=2, 

                     centers=[(1,1), (1,8), (8,1), (8,8)], 

                     cluster_std = [1, 0.5, 1, 2], 

                     random_state=123)

# plot the input data

plt.scatter(data[:, 0], data[:, 1], edgecolors='black')

plt.show()
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Machine Learning with Python

First example (k-means)



# min-max scaling

scaler = MinMaxScaler().fit(data)

data = scaler.transform(data)

# cluster the data with the specified number 

# of clusters

clust = KMeans(n_clusters=4)

clust.fit(data)

print(clust.labels_) # assigned cluster indices

# plot cluster results with centers 

plt.figure(figsize=(6, 6))

plt.scatter(data[:, 0], data[:, 1], c = clust.labels_, 

            cmap=plt.cm.coolwarm, edgecolors='black')

plt.scatter(clust.cluster_centers_[:, 0], 

            clust.cluster_centers_[:, 1],

            marker='X', s=100, c="black")# shows cluster centers

plt.title('k-means')

plt.show()
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Machine Learning with Python

First example (k-means)



 for other clustering models, the source code requires only minor changes, e.g.:

 the use of a different sklearn class

 or different preprocessing steps

 or loading different data sets
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Machine Learning with Python

First example (k-means)



Hierarchical methods create a hierarchy of splits/merges of a dataset:

 agglomerative methods (bottom-up):

1. start with each data object being one cluster 

2. iteratively merge the clusters

3. stop when all clusters are merged or a stopping condition is met

 divisive methods (top-down):

1. start with all data objects being one cluster 

2. iteratively split each cluster into smaller ones

3. stop when each object forms its own cluster or a stopping condition is met

 merging or splitting is done based on dissimilarities 

( = distances, so-called “linkages”) or on densities

 a merging or splitting step can not be undone
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Hierarchical clustering



The underlying principle
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Hierarchical clustering



Notation: Let 𝐶𝑖 , 𝐶𝑗 ⊂ 𝐷 with 𝐶𝑖 ∩ 𝐶𝑗 = ∅ be two cluster of size 𝑁𝑖, respectively 𝑁𝑗. 𝑐𝑖 and 𝑐𝑗 denote 

representatives for the clusters, and 𝑜 refers to data points in the data set.

centroid: Dissimilarity between centroids, e.g. the mean value vectors:  𝑑 𝐶𝑖 , 𝐶𝑗 = 𝑑(𝑐𝑖 , 𝑐𝑗)

average linkage: Average dissimilarity between all pairs of points: 𝑑 𝐶𝑖 , 𝐶𝑗 =
1

𝑁𝑖𝑁𝑗
σ𝑜∈𝐶𝑖

σ𝑜′∈𝐶𝑗
𝑑(𝑜, 𝑜′)

 leads to compact clusters

single linkage: Dissimilarity between the two most similar data points: 𝑑 𝐶𝑖 , 𝐶𝑗 = min
𝑜∈𝐶𝑖, 𝑜′∈𝐶𝑗

𝑑(𝑜, 𝑜′)

 can follow chains in the data, i.e. can cluster data sets with “strange” shapes

 sensitive to outliers

complete linkage: Dissimilarity between the two most dissimilar data points: 𝑑 𝐶𝑖 , 𝐶𝑗 = max
𝑜∈𝐶𝑖, 𝑜′∈𝐶𝑗

𝑑(𝑜, 𝑜′)

 leads to compact clusters

 sensitive to outliers

Hierarchical clustering

Dissimilarity between clusters (“linkage variants”)
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Hierarchical clustering

Functioning of agglomerative clustering



Dendrogram

• hierarchical clustering can be visualized with a tree-like structure 

➢ a so-called dendrogram

• the dendrogram shows the splitting/merging operations, together with the 

corresponding dissimilarities (height = distance)

Hierarchical clustering

Dendrogram
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#imports …

# create data set with four clusters

data, _ = make_blobs(n_samples=200, n_features=2, 

                     centers=[(1,1), (1,8), (8,1), (8,8)], 

                     cluster_std = [1, 0.5, 1, 2])

# min-max scaling

scaler = MinMaxScaler().fit(data)

data = scaler.transform(data)

#cluster the data with the specified linkage variant

clust = AgglomerativeClustering(linkage="average", n_clusters=4)

clust.fit(data)
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Hierarchical clustering



# plot cluster results 

plt.figure(figsize=(6, 6))

plt.scatter(data[:, 0], data[:, 1], c = clust.labels_, 

            cmap=plt.cm.coolwarm, edgecolors='black')

plt.title(“Agglomerative clustering“)

plt.show()
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Hierarchical clustering



details see for example (Ester et al., 1996)

Hyperparameters: 

• radius 𝜖

• MinPts (number of data points in the neighbourhood including the data point itself)
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Density-based methods
Density-Based Spatial Clustering of Applications with Noise (DBSCAN)



#imports …

# create data set with four clusters

data, _ = make_blobs(n_samples=200, n_features=2, 

                     centers=[(1,1), (1,8), (8,1), (8,8)], 

                     cluster_std = [1, 0.5, 1, 2])

# min-max scaling

scaler = MinMaxScaler().fit(data)

data = scaler.transform(data)

#cluster the data with the specified radius and number of data points

clust = DBSCAN(eps=0.1, min_samples=3)

clust.fit(data)
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Density-based methods
DBSCAN



# plot cluster results 

plt.figure(figsize=(6, 6))

plt.scatter(data[:, 0], data[:, 1], c = clust.labels_, 

            cmap=plt.cm.coolwarm, edgecolors='black')

plt.title("DBSCAN clustering')

plt.show()
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Density-based methods
DBSCAN



Cluster evaluation (or cluster validity validation) assesses:

1. the feasibility of clustering analysis on a data set 

(before clustering)

 assessing clustering tendency

(Check whether a nonrandom structure exists in the data)

 determining the number of clusters in a data set

2. the quality of the results generated by a clustering algorithm 

(after clustering)

 determining the number of clusters in a data set

 measuring the clustering quality

Evaluation of clustering
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Assessing of cluster tendency (before clustering)

 If an algorithm “finds clusters” --

does the data really 

have “reasonable” clusters?

example: k-means on random data

(uniform distribution, i.e. no clusters 

to be expected)

Evaluation of clustering

Assessing clustering tendency
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Example: Elbow/knee method for the Iris data set

Evaluation of clustering

Determining the number of clusters

elbow/knee for k = 2 or 3
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Cluster vehicle fault codes into 

the operation modes when they 

where detected

 DTC “P0171 : System Too Lean Bank 1”

 with freeze frames engine RPM and 

engine coolant temperature

➢ identified predominant modes:

• mode 1: engine warm and in idle

• mode 2: engine warm and vehicle is 

moving

• mode 3: engine cold and in idle

Andreas Theissler. “Multi-class Novelty Detection in 

Diagnostic Trouble Codes from Repair Shops”. 

Proceedings IEEE International Conference on Industrial 

Informatics. 2017
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Case studies

engine warm 

and in idle

engine warm and 

vehicle is moving

engine cold and 

in idle
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