
Seminar Grundlagen Machine Learning
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Umsetzung mit Python

03: Classification



Fundamentals
Defining classification

Remember the introduction to “clustering”?

The task of clustering is to group instances

➢ Classification: 

“Classify” an instance as any of N pre-defined classes.
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Fundamentals
Defining classification

Example 1: Classify the instances as one of the three classes “circle”, 

“square”, “triangle”

class: circle

class: square

class: triangle
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Fundamentals: Machine Learning – on one slide
Classification of apples and pears

Breite

H
ö

h
e

training set

width: 7cm, height: 6cm + „apple“

width: 5cm, height: 9cm + „pear“

 ...

Training

1. training set + class labels are passed to a model

2. the model learns a decision function

„feature vectors“ +

„class labels“

„feature space“

„decision function“

Breite
H

ö
h
e

test set

width: 6 cm, height: 5 cm

width: 4 cm, height: 8 cm

              ...

Test

1. test data is passed to model without class labels

2. the model classifies the test data using the decision function

3. results are compared to the true class labels

Machine Learning 

model

Machine Learning 

model

pear

apple

error 

(simple 

error 

measure)

1

4
= 25%
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Fundamentals
Machine learning
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Separation of training and test set: „hold-out“

training set

labeled data set test set

• split the labeled data set into training set and test set

➢ we should not use instances of the training set during test and 

vice-versa!



Fundamentals
Machine learning
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Separation of training and test set: „cross-validation“

labeled data set

test set

test set

test set

test set

training set

• typically there is a lack of labeled training data

➢ one common method is cross-validation with „k-fold“:

• randomly split the training set into k chunks

• run training and test k times using each chunk as test set once and the remaining k-1 
chunks as training set 

• outputs k accuracies, that we can average 
=> can also be used to estimate the variability of the expected results

fold 1 fold 2 fold 3 fold 4



Fundamentals
Statistical background

In applications, the Bayes error is usually unknown!

Calculating the Bayes error requires knowledge of:

1. the type of probability density functions

2. the statistical parameters of the probability distributions

3. the prior class probabilities

Bayes error

➢ The Bayes error lower bounds the 

error rate for any classifier. 

➢ note: the error is formulated 

independently of classifier properties

➢ the error exclusively depends on the 

properties of the data set in feature 

space F

The Bayes error
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Fundamentals

Machine learning
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Evaluation criteria for Machine Learning models (Han et al.):

1. accuracy

2. speed (computational costs)

3. robustness (robustness against noise in training sets)

4. scalability (e.g. computational costs)

5. interpretability (understandability of the classifier or its results)



Fundamentals

Machine learning: classification
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classification results

(prediction)

class labels (true class)

„square“ „circle“

„square“ true „squares“: false „squares“:

„circle“ false „circles“: true „circles“:

Measuring the classification results

In the test phase, the number of correctly and incorrectly classified instances are 

counted and stored in the so-called 

“confusion matrix” (=“contingency table”):  

(Note: rows and columns are not consistent in tools and literature! 

Might be vice versa!)



Confusion matrix

 measuring classifier outputs (here for two classes):

Based on the confusion matrix, a variety of measures can be calculated (see e.g. 

(Fawcett 04)). Some of them are:

1. 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑀
 =

𝑇𝑃+𝑇𝑁

𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸+𝑁𝐸𝐺𝐴𝑇𝐼𝑉𝐸

2. 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 𝑇𝑃𝑅 =
𝑇𝑃

𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸
 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

3. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑝𝑜𝑠 =
𝑇𝑃

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
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Fundamentals

Classification results

result 

(prediction)

class label (true class)

POSITIVE NEGATIVE

positive TP FP

negative FN TN

TP: number of true positives

FP: number of false positives

FN: number of false negatives

TN: number of true negatives

POSITIVE = TP + FN

NEGATIVE = TN + FP

M = number of instances    

    = POSITIVE + NEGATIVE



For many classes, the confusion matrix becomes hard to read.

Example: classification of handwritten digits 0…9 („MNIST“)

Reference

Prediction    0    1    2    3    4    5    6    7    8    9

0 973    0    3    0    2    2    6    2    5    3

1 0 1127    2    0    1    0    2    2    0    4

2 0    2 1013    1    2    0    1   11    3    1

3 1    0    2  997    0   10    0    1    3    5

4 0    0    1    0  963    1    4    0    5    7

5 1    0    1    4    0  865    4    1    3    3

6 2    2    1    0    5    6  941    0    2    0

7 1    0    5    3    1    1    0 1006    4    6

8 1    4    4    2    1    4    0    1  944    0

9 1    0    0    3    7    3    0    4    5  980

Accuracy : 0.9809         

Statistics by Class: 

Class: 0 Class: 1 Class: 2 Class: 3 Class: 4 Class: 5  Class: 6 Class: 7 Class: 8 Class: 9

0.9929    0.9930    0.9816   0.9871   0.9807   0.9697    0.9823   0.9786   0.9692   0.9713
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Fundamentals

Classification results



 Interprete the confusion matrix on the previous slide

 Name three findings you can see in the matrix

 Possible solutions:

• 6 digits that are „9“ were misclassified as „7“

• 980 digits that are „9“ were correctly classified as „9“

• 98% of all digits were classified correctly

• „0“ classified as „0“: 99,29%, ...
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Fundamentals

Classification results



 overfitting: the classifier learns the specifics of the training set, but does not generalize well

 underfitting: the classifier does not learn the training set well enough (e.g. because the decision 

functions are not flexible enough)

Prof. Dr. Andreas Theissler 13

Artificial neural networks (ANNs)

Overfitting and underfitting

=

=

„underfitting“:

error on training set: high

error on test set: high

„overfitting“:

error on training set: very low

error on test set: high

good model:

error on training set: low

error on test set: low

➢ Note: 

We do not want the optimal solution on the training set.

We want an optimal solution on unseen data!



Classifiers
Linear classifiers
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General description of linear classifiers

f1

f 2

class ω2

class ω1

• the idea:

separate classes with a linear 

decision function

decision function



Classifiers
Non-linear classifiers
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➢ linear classifiers have a strong limitation:

• they work well when the classes are linearly separable, if this is not the case 

they can’t find a good solution

➢ let’s have a look at the so-called “XOR-problem”:    

• a data set with only four instances that appears to be quite simple

• try to separate the two classes using any type of linear classifier

The „XOR-problem“

f1

class ω1

class ω2

f 2



Classifiers
Non-linear classifiers
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• to overcome the problem of linearly non-separable data sets: classifiers with 

non-linear decision boundaries are introduced in the following slides 

Introducing non-linear classifiers



Classifiers
Non-linear classifiers
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nearest neighbor (NN, 1-NN)

• the idea:

an instance belongs to the class of its nearest 

neighbor

• how it works:

1. store all instances from a training set

2. for an unclassified instance find the nearest 

neighbor in the training set

3. assign the class of the nearest neighbor



Classifiers
Non-linear classifiers
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nearest neighbor (NN, 1-NN)

f1

f 2

class ω2

unclassified instance

class ω1

nearest neighbor



Classifiers
Non-linear classifiers
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nearest neighbor (NN, 1-NN): evaluation

• interpretability

• easy to implement

• can be applied to any type of 
data set, if a distance 
measure can be defined

• training phase is extremely 
fast (training corresponds to 
just storing the instances)

advantages    +  

• robustness: sensitive to 
individual outliers in the 
training set

• scalability: classification can 
be slow, since it requires 
visiting of all instances to find 
the nearest neighbor

disadvantages    
-



Classifiers
Non-linear classifiers
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k-nearest neighbors (k-NN with k > 1)

• the idea:

an instance belongs to the class of its k nearest 

neighbors

• how it works:

1. store all instances from a training set

2. select the parameter k

3. for an unclassified instance find the k nearest 

neighbor in the training set

4. classify the instance based on the majority class 

in the k nearest neighbors (typically odd numbers 

are used: 3, 5, 7, ...)



 k-nearest neighbors (k-NN)
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Classifiers
Non-linear classifiers

f1

f 2

class ω2

unclassified instance

class ω1

3 nearest neighbors (k=3)



# sklearn imports

from sklearn.datasets import make_moons

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix, accuracy_score

from sklearn.preprocessing import MinMaxScaler

# create data set

data, labels = make_moons(n_samples=500, noise=0.1)

# split into training and test set

train_data, test_data, train_labels, test_labels = train_test_split(data, 

      labels, test_size = 0.5)

[…]
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Classifiers

k-nearest neighbours (k-NN)



[…]

# min-max scaling: determine scaling parameters

scaler = MinMaxScaler().fit(train_data)

# scale train set and test set

train_data = scaler.transform(train_data)

test_data = scaler.transform(test_data)

# create k-nearest neighbours with k = 3

model = KNeighborsClassifier(n_neighbors=3)

# train model on training set

model.fit(train_data, train_labels)

# classification of test set

predictions = model.predict(test_data)

acc = accuracy_score(test_labels, predictions)

cm = confusion_matrix(test_labels, predictions)
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Classifiers

k-nearest neighbours (k-NN)



Classifiers
Non-linear classifiers
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k-nearest neighbors (k-NN): evaluation

• interpretability

• easy to implement

• can be applied to any type of 
data set, if a distance measure 
can be defined

• training phase is extremely fast 
(training corresponds to just 
storing the instances)

advantages    +  

• scalability: classification can be 
slow, since it requires visiting of 
all instances to find the k nearest 
neighbors

disadvantages    -



The idea:

separate the classes in the training set by 

recursively splitting the data by thresholding 

individual features

The algorithm: 

1. create a node

2. select the best split using some 

splitting criterion

3. grow branches according to the split 

(binary vs. multiple branches) 

4. recursively continue with 1. until some 

stopping criterion is met or all branches 

contain only feature vectors from one 

class („purity“)

=> bottom nodes become „leaves“

Prof. Dr. Andreas Theissler

Decision trees

feature 1 < 4

feature 2 < 5 feature 3 < 8

yes no

class 
1

class 
2

...
yes no

25



 learning a decision tree from a training set is referred to as decision tree induction

 to avoid overfitting, the resulting tree can be pruned

 there are different splitting criteria, i.e. techniques to identify the features to be used in the 
current split together with the threshold

 per split/node one feature is used (univariate split)

 however, there are advancements of trees combining features (multivariate splits)

 common decision tree algorithms: 

 ID3 (Quinlan, 1986)

 C4.5 (Quinlan, 1993)

 C5.0 (Quinlan, 2017)

 CART (Classification and Regression Trees) (Breiman, 1984)

 although having been around for many years, decision trees are worth to study:

 they are interpretable (a currently hot research topic in AI) 

 they are the components of powerful, advanced machine learning methods like random forests and 
gradient boosting machines (e.g. xgboost)
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Decision trees



Classifiers
Non-linear classifiers
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• the resulting decision boundaries are piecewise 

linear

• a decision tree can be transformed into a rule-

base:

if feature 1 < x ... 

• (there are advanced techniques using a 

combination of several features per node)

Decision trees



Information gain uses entropy from information theory (Shannon)

 the split with the highest information gain is chosen, i.e. the split that minimizes the 
information needed to classify the remaining feature vectors

 in other words: the split that creates the least "impurity“

 a split can create multiple branches (N>2)

 in the context of decision trees this entropy corresponds to a measure of impurity

The entropy is measured as information in bits and is calculated by:

𝐼 𝐷 = − ෍

𝑖=1

𝐶

𝑝𝑖 ∗ 𝑙𝑜𝑔2 𝑝𝑖

 with 𝐷: data set, 𝐶 : number of classes, 𝑝𝑖 =
|𝐶𝑖 𝑖𝑛 𝐷|

|𝐷|
 : probability that a feature vector in 

𝐷 belongs to class 𝐶𝑖  

 𝐼 𝐷 = 0 … 1, where 𝐼 𝐷 = 0, if all feature vectors belong to the same class
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Decision trees 

Splitting criterion: information gain



In order to find the best split, the entropy for all possible splits is calculated. For a split A:

𝐼 𝐷𝑠𝑝𝑙𝑖𝑡 𝐴 = − ෍

𝑗=1

|𝑆|
|𝐷𝑗|

|𝐷|
∗ 𝐼 𝐷𝑗

with:

 |𝑆|: number of possible splits, i.e. for discrete, categorical or binary values, the number 

of different values

 |𝐷𝑗|: number of feature vectors in partition 𝑗



|𝐷𝑗|

|𝐷|
 : in order to weight according to the number of feature vectors per partition

From all candidate splits, the one is selected that maximizes the information gain 𝑰𝑮 :

𝐼𝐺𝑠𝑝𝑙𝑖𝑡 𝐴 = 𝐼 𝐷 − 𝐼 𝐷𝑠𝑝𝑙𝑖𝑡 𝐴

 in other words: 𝐼𝐺𝑠𝑝𝑙𝑖𝑡 𝐴 determines how much is gained by the splitting candidate A
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Decision trees 

Splitting criterion: information gain



Exercise: „Information gain“

Calculate the information gain for the 

following two-class problem with categorical 

attributes

 number of feature vectors: 14

 two classes: P and N

 9 feature vectors of class P, 5 of class N

1. Entropy of 𝑫:

 𝑝𝑃 =
9

14
 ;  𝑝𝑁 =

5

14

 𝐼 𝐷 = − σ𝑖=1
𝐶 𝑝𝑖 ∗ 𝑙𝑜𝑔2 𝑝𝑖

= −
9

14
∗ 𝑙𝑜𝑔2

9

14
−

5

14
∗ 𝑙𝑜𝑔2

5

14
= 0.94 𝑏𝑖𝑡𝑠

2. Entropy of possible split by feature „outlook“:

 𝑆 = 3 ;  𝑆 =(sunny, overcast, rain)

 𝐷1  = 5 ;  𝐷2 = 4  ;  𝐷3 = 5 :  (possible splits by S)

 𝐼 𝐷𝑠𝑝𝑙𝑖𝑡 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = − σ𝑗=1
|𝑆| 𝐷𝑗

𝐷
∗ 𝐼 𝐷𝑗

=
5

14
∗ −

2

5
∗ 𝑙𝑜𝑔2

2

5
−

3

5
∗ 𝑙𝑜𝑔2

3

5

+
4

14
∗ −

4

4
∗ 𝑙𝑜𝑔2

4

4

+
5

14
∗ −

3

5
∗ 𝑙𝑜𝑔2

3

5
−

2

5
∗ 𝑙𝑜𝑔2

2

5
= 0.694 𝑏𝑖𝑡𝑠

3. Information gain for this split:

 𝐼𝐺𝑠𝑝𝑙𝑖𝑡 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 𝐼 𝐷 − 𝐼 𝐷𝑠𝑝𝑙𝑖𝑡 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 0.246 𝑏𝑖𝑡𝑠 

4. Repeat this for features „Temperature“ and „Humidity“ 
and find maximum information gain.
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Decision trees 

Splitting criterion: information gain

adapted from original ID3 paper: (Quinlan, 1986)

3 out of the 5 feature 

vectors with 

feature=„sunny“ are 

of class N



Gini index finds that binary split that minimizes the “impurity”

The Gini index for 𝐷 is calculated:

𝐺𝑖𝑛𝑖 𝐷 = 1 − ෍

𝑖=1

𝐶

𝑝𝑖
2

with notation equivalent to information gain:

 𝐷: data set, 𝐶 : number of classes, 𝑝𝑖 =
|𝐶𝑖 𝑖𝑛 𝐷|

|𝐷|
 : probability that a feature vector in 𝐷

belongs to class 𝐶𝑖  

 𝐺𝑖𝑛𝑖 𝐷 = 0 … 1, where 𝐺𝑖𝑛𝑖 𝐷 = 0, if all feature vectors belong to the same class, 

which is the ideal case
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Decision trees

Splitting criterion: Gini index



In order to find the best binary split, the weighted sum of the Gini indices 𝐺𝑖𝑛𝑖 𝐷𝑗  resulting 

from the two partitions is calculated:

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 𝐴 𝐷 =
|𝐷1|

|𝐷|
∗ 𝐺𝑖𝑛𝑖 𝐷1 +

|𝐷2|

|𝐷|
∗ 𝐺𝑖𝑛𝑖 𝐷2

The reduction of impurity is then calculated by:

∆𝐺𝑖𝑛𝑖 = 𝐺𝑖𝑛𝑖 𝐷 − 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 𝐴 𝐷

 All possible split candidates are tested, and the one is selected where ∆𝐺𝑖𝑛𝑖 is maximum.
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Decision trees

Splitting criterion: Gini index



Exercise: „Gini index “

Calculation of Gini index for the following 

two-class problem with categorical attributes

 number of feature vectors: 14

 two classes: P and N

 9 feature vectors of class P, 5 of class N

1. Gini of 𝑫:

Gini creates binary splits, so let‘s define a split 
on the feature „Outlook“ as 
(1: sunny ;  2:rain or overcast)

 𝑝𝑃 =
9

14
 ;  𝑝𝑁 =

5

14

 𝐺𝑖𝑛𝑖 𝐷 = 1 − σ𝑖=1
𝐶 𝑝𝑖

2 = 1 −
9

14

2
−

5

14

2
=

0.46 

2. Gini of partitions

𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 𝑂𝑢𝑡𝑙𝑜𝑜𝑘 𝐷

=
|𝐷1|

|𝐷|
∗ 𝐺𝑖𝑛𝑖 𝐷1 +

|𝐷2|

𝐷
∗ 𝐺𝑖𝑛𝑖 𝐷2 = ⋯

3. Calculate the split‘s improvement of Gini

∆𝐺𝑖𝑛𝑖 = 𝐺𝑖𝑛𝑖 𝐷 − 𝐺𝑖𝑛𝑖𝑠𝑝𝑙𝑖𝑡 𝐴 𝐷

4. Repeat this for other split options on this 
feature and for the features „Temperature“ 
and „Humidity“ and find the best split.
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Decision trees

Splitting criterion: Gini index

adapted from original ID3 paper: (Quinlan, 1986)



 in addition to Gini and entropy, there are more splitting criteria. 

 Gini and entropy are the most common ones.

 the splitting criterion can be viewed as a hyperparameter, so various can be tested

 results with Gini and entropy are often not very different, if results are different entropy 

tends to yield more balanced trees (Geron, 2019)

 computation of Gini is faster

 in the python-library scikit-learn, Gini is the default
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Decision trees

Splitting criteria



 https://scikit-learn.org

 In the python library scikit-learn (sklearn) a decision tree 
is available with the class DecisionTreeClassifier 

 uses CART (Classification and Regression Trees) (Breiman, 1984)

 some important parameters: 

 max_depth, allowing to prune the tree

 criterion, splitting criterion: Gini index is the default, entropy can be used
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Decision trees

scikit-learn
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Decision trees

scikit-learn



Decision tree with Python and scikit-learn
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Decision trees

scikit-learn
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Decision trees

Evaluation

advantages    +  

• interpretability: results are human-
readable, which is a benefit for many 
domains (e.g. medical systems)

• works with numerical and categorical 
data

• no scaling of input data required

• can return feature importance

• can also be used for regression 
(regression trees)

disadvantages    -

• decision boundaries are not very 
flexible (piecewise-linear), they 
evaluate one feature at a time

• at each step the locally optimal 
decision is made, does not 
necessarily lead to a globally optimal 
solution

• a tree may overfit the data 
(pruning should be used)

• slightly different data (e.g. by 
randomly splitting train and test set), 
may lead to completely different trees

38



The idea:
Create many decision trees and combine the 
result with majority voting.

Assumption: the result of a combination of 
different classifiers is likely to be better than of a 
single classifier. 

A random forest is an ensemble method, 
i.e. a random forest is an ensemble of trees.

The algorithm: 

1. create many different decision trees 
𝑇1 … 𝑇𝑀

2. the different trees are created by 
randomly subsampling the features and 
the data set at each node of each tree

3. a feature vector in the test set is classified 
by each tree 𝑇𝑖

4. the classification result is the most 
frequent result from 𝑇1 … 𝑇𝑀
(majority voting)
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Random forests (Breiman, 2001)

feature 1 < 4

feature 2 < 5 feature 3 < 8

yes no

class 
1

class 
2

...
yes no

feature 5 < 7

feature 3 < 1 feature 1 < 0

yes no

class 
2

class 
3

...
yes no

𝑇1

𝑇𝑀

…

39



A random forest is an ensemble of randomly created, different decision trees 

(base classifiers).

 the number of trees is a hyperparameter (e.g. 100)
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An ensemble performs best, if the base classifiers are diverse and unrelated.

In a random forest this is achieved by:

1. bagging: training each of the decision trees with a different subset of the data

 bootstrap aggregation (bagging) is typically used for this

 in bagging, from a data set 𝐷 consisting of 𝑁 feature vectors, 𝑁 of these feature vectors are 

randomly drawn with replacement and become the training set 𝐴

 i.e. a feature vector can be drawn multiple times

 the feature vectors not drawn become the test set 𝐵

 it can be shown, that on average 63.2% of the feature vectors are in the training set

2. feature subsampling: randomly selecting subsets of features at each node of each tree 

 for example for |𝐹| features, |𝐹| can be selected as candidates at each node

 using a splitting criterion, the best split is determined from this subset 
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Random forests

Evaluation

advantages    +  

• avoids overfitting

• reduces the variance

• often better results compared to single trees

• works with numerical and categorical data

• no scaling of input data required

• works for large, high-dimensional data sets, 
since at each split only a subset is tested

• can return feature importance

• can also be used for regression 

disadvantages    -

• in contrast to single decision trees, a 
random forest is not (easily) interpetable

• computationally expensive, compared to 
single tree
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https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier

 In scikit-learn (sklearn) a random forest is available with the class 
RandomForestClassifier 

 some important parameters: 

 n_estimators, determining the number of decision trees to be created

 max_depth, allowing to prune the tree

 max_features, number of features to consider at each split

 current defaults are: n_estimators=100, criterion='gini', max_depth=None
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Random forests

scikit-learn

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier
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Random forests

scikit-learn



 Gradient boosting machines (GBM) refers to a family of methods of ensembles of trees 

using boosting

 GBMs are also referred to as gradient tree boosting

 an early boosting algorithm with decision trees is AdaBoost (Adaptive Boosting)

 later generalized and then termed Gradient Boosting Machines (Friedmann, 2000)

 a widely used scalable implementation is XGBoost (Extreme Gradient Boosting)

(Chen and Guestrin, 2016)
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 boosting uses an ensemble of subsequent base classifiers (weak learners)

 the idea of boosting is, that each base classifier k tries to correctly classify those feature 

vectors misclassified by base classifier k-1

 this is achieved by random sampling, with increased probability of drawing a previously 

misclassified feature vector (weights are iterativelly assigned to feature vectors)

 the final results is a combination of each classifiers‘ results, weighted by its accuracy

 early algorithms are AdaBoost and AdaBoost.M1
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The idea:

 Create many sequential decision trees 

𝑇1 … 𝑇𝑀, where each new tree 𝑇𝑖 tries to 

minimize the errors of the previous tree 𝑇𝑖−1. 

 Combine the results with weighted voting.

 XGBoost is an ensemble method

consisting of sequential trees. 

The algorithm: 

1. add one tree 𝑇𝑖  per step

2. the new tree is found such that the error 

of the previous tree 𝑇𝑖−1 is minimized

3. goto 1. until some stopping criterion is 

reached (e.g. number of steps)

4. the classification result is found by using 

the results of 𝑇1 … 𝑇𝑀, weighted by their 

accuracies

 i.e. the votes of better trees have higher 

weights
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Gradient boosting machines
XGBoost (Extreme Gradient Boosting) (Chen and Guestrin, 2016)
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…
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GBMs and in specific XGBoost use a special form of boosting, referred to as gradient boosting

 one tree 𝑇𝑖 is added in each step

 regression trees are used (i.e. continuous outputs), allowing to sum up the subsequent outputs

 the new tree 𝑇𝑖 is selected such that an objective function 𝑜𝑏𝑗 is minimized

 general form of objective function:

𝑜𝑏𝑗 = 𝑙𝑜𝑠𝑠 + 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛

with:

 𝑙𝑜𝑠𝑠: some kind of error function expressing the error between predicted values and true values, 

i.e. 𝑙𝑜𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠

 e.g. sum of squared errors

 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 : a term controlling the model 𝑇𝑖, i.e. 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛(𝑇𝑖), e.g. to avoid overfitting

 e.g. model complexity, like number of leaves

 minimizing 𝑜𝑏𝑗 is achieved by the trade-off of minimizing 𝑙𝑜𝑠𝑠, while keeping 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑠𝑎𝑡𝑖𝑜𝑛 minimal

 achieved with a gradient descent approach, referred to as functional gradient descent 

 ( beyond scope, see e.g. (Friedman,2000) or (Chen and Guestrin, 2016) )
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XGBoost (Extreme Gradient Boosting)



Prof. Dr. Andreas Theissler

XGBoost

Evaluation

advantages    +  

• avoids overfitting

• usually better results compared to single 
trees

• works with numerical and categorical data

• can handle missing values

• no scaling of input data required

• works for large, high-dimensional data sets, 
since at each split only a subset is tested

• can return feature importance

disadvantages    -

• in contrast to single decision trees, a 
random forest is not (easily) interpetable

• computationally expensive compared to 
single trees, however XGBoost was 
implemented towards efficiency and 
scalablitity
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https://xgboost.readthedocs.io/en/latest/python/python_intro.html

 XGBoost is not contained scikit-learn (sklearn), module xgboost required

 however it can be combined with scikit-learn 

 some important parameters: 

 n_estimators, determining the number of decision trees to be created

 max_depth, allowing to prune the tree

 reg_lamda, regularisation parameter controlling the trade-off between loss and reg. term

 learning_rate, also referred to as \eta. controls the contribution of each new tree (0,1)
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Python module xgboost

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier
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XGBoost

Python module xgboost + scikit-learn



Support vector machines (SVM)
Introduction

Prof. Dr. Andreas Theissler

𝑥𝑖: one dimension in the feature 

     space, i.e. one feature

𝑥𝑖:  one feature vector (one instance)

Ԧ𝑥:  the feature space

𝑥𝑖 𝑥𝑗: inner product, dot product, scalar 

product of 𝑥𝑖  and 𝑥𝑗 

𝑁:  number of instances

𝑛:  number of features

𝑤: vector of weights

| 𝑤 |: norm of the vector 𝑤

𝜔𝑖: class i

𝑦𝑖: label (+1 or -1)

Notation

We use arrows to denote vectors, in contrast to most of the literature on 

data mining, where vectors are written without arrows. 
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Introduction
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Separating two classes with linear decision functions

x1

x 2

class ω2

class ω1

D1

D2

D3 The number of possible 

decision functions is 

infinite.

So which one should be 

chosen?

Intuitively D3 seems to be 

the best, but why?
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Finding the optimal linear decision function

x1

x 2

class ω2

class ω1

D1 D3
margin of D

1

Based on the informal 

explanation, let us compare 

the two candidates D1 and D3

Our intuition was correct:

• D3  has the maximal 

margin, it is much larger 

than the margin of D1

➢ D3 is the optimal decision 

function



Support vector machines (SVM)
Introduction
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Support vector machines for linear separable data

the idea:

separate the instances of two classes using a linear decision function referred to as 

“hyperplane”

how it works:     (informal explanation for a two-dimensional space)

1. find two parallel lines, one intersecting one or more instances at the boundary of 

class ω1 and the other line intersecting one or more instances of class ω2

2. find the line, with equal distance to each of the two parallel lines 

(the line „in the middle“)

3. measure the distance between the two outer lines

➢ this distance is referred to as the „margin“

➢ the optimal decision function is the one with the maximum margin

4. the decision function is expressed using instances from the training set, 

the so-called support vectors



Support vector machines (SVM)
Expressing the decision function
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Expressing the decision function in two-dimensional space

A linear function in a two-dimensional space can be expressed by the well-known „slope-

intercept-form“:

𝑦 = 𝑚𝑥 + 𝑏

The y(x)-form is constrained to two dimensions. To make the formula more generic we use 

the dimensions 𝑥1 and 𝑥2 and 𝑤1 instead of 𝑚:

𝑥2 = 𝑤1𝑥1 + 𝑏
which can be reformulated as

𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 = 0

Substituting the scalars with the vectors 𝑤 =
𝑤1

𝑤2
 and Ԧ𝑥 =

𝑥1

𝑥2

leads to the general form of the linear decision function: 

𝒘 𝒙 + 𝒃 = 𝟎
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Expressing the decision function
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Expressing the decision function using vectors

Up to now we have looked at a two-dimensional space (2 features),

where the linear decision function is simply a line.

In a three-dimensional space (3 features) the line becomes a plane

and in higher-dimensional spaces (>3) it is referred to as a „hyperplane“.

We will use the term hyperplane, independent of the number of dimensions.

The hyperplane is expressed as 

𝒘 𝒙 + 𝒃 = 𝟎

 or  𝒘𝟏𝒙𝟏 + 𝒘𝟐𝒙𝟐 +  … + 𝒘𝒏𝒙𝒏 + 𝒃 = 𝟎      

 with     𝒘 =

𝒘𝟏

…
𝒘𝒏

    and 𝒙 =

𝒙𝟏

…
𝒙𝒏

where 𝑛 is the number of features. (For all data points 𝒙 becomes a matrix)
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Using the decision function to classify instances

Instead of class labels 𝜔1 and 𝜔2we will use +1/-1 to label the classes:

𝑦𝑖 = +1   if 𝑥𝑖 is 𝜔1     and      𝑦𝑖 = −1    if 𝑥𝑖 is 𝜔2

Classification of a feature vector 𝑥𝑖 is done using the sign-function: 

D 𝑥𝑖 = sign 𝑤 𝑥𝑖 + 𝑏 

i.e.:

D 𝑥𝑖 = +1 if    𝑤 𝑥𝑖 + 𝑏 > 0 
D 𝑥𝑖 = −1     if     𝑤 𝑥𝑖 + 𝑏 < 0

Please note: 𝑤 ≠  𝜔 (𝜔 refers to the classes and 𝑤 to the so-called weights, in accordance 

with the common notation used in literature)
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Having done some math… the optimization problem is given by

minimize           
1

2
||𝑤||2                                   (a)

subject to  𝑦𝑖 𝑤 𝑥𝑖 + 𝑏 ≥ 1      for all 𝑖       (b)

Using the „method of Lagrange“, we can incorporate (b) into (a). 

Deriving the new equation and setting it to 0 yields the following optimization problem:

maximize L α =  σ𝑖=1
𝑁 𝛼𝑖  −

1

2
σ𝑖,𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 𝑥𝑖 𝑥𝑗   

subject to σ𝑖=1
𝑁 𝛼𝑖𝑦𝑖 = 0 

  𝛼𝑖 ≥ 0   for all 𝑖

where 𝛼𝑖 and 𝛼𝑗 are the so-called Lagrance multipliers.  
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Finding the optimal decision function
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• SVM finds the optimal linear decision function: 

the „maximum margin hyperplane“

• the found hyperplane is guaranteed to be the optimal solution, there are no local 

minima

• the decision function is expressed using instances 𝑥𝑖  from the 

training set

➢ the so-called „support vectors“ 

• this type of SVM is called „hard-margin SVM“ and can be used if the classes 

are linearly separable

Summary: SVM for linearly separable classes
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What if the data is not fully linearly separable?

x1

x 2

class ω2

class ω1

D3

𝜉𝑖

𝜉𝑖

𝜉𝑖𝜉𝑖

A hard-margin SVM cannot find 

a decision function if the classes 

are not linearly separable.

Solution: 

• allow some instances to be 

on the opposite side of the 

supporting hyperplanes

• penalize those instances by 

introducing so-called slack 

variables 𝜉𝑖:

• 𝜉𝑖 > 0 if the instance 𝑥𝑖 

is not within the 

boundary

• 𝜉𝑖 = 0 otherwise

This type of SVM is called „soft-

margin SVM“
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minimize 
1

2
||𝑤||2 + 𝐶 σ𝑖=1

𝑁 𝜉𝑖

subject to 𝑦𝑖 𝑤 𝑥𝑖 + 𝑏 ≥ 1 − 𝜉𝑖   for all 𝑖

where 𝐶 is a regularization parameter controlling how many and how far instances 

may lie outside of the supporting hyperplanes.

𝑪 is a hyperparameter, regularizing the influence of the slack variables

Again, using the method of Lagrange, the optimization problem can be 

reformulated.

Optimization problem for the soft-margin SVM
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Soft-margin SVM
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The soft-margin SVM works fine, if individual instances prevent the SVM from 

finding a linear decision function.

If the entire data set is not linearly separable, there is a better solution:

A data set that is not linearly separable in the given 

feature space 

𝑹𝑵 

can be linearly separated in a higher-dimensional space 

𝑹𝑴

𝑅𝑁  → 𝑅𝑀 𝑤ℎ𝑒𝑟𝑒 𝑀 > 𝑁
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Example: the XOR-problem

x1

class ω1

class ω2

x 2

x1

x 2

If we 

1. add a third dimension x3 and 

2. „somehow“ shift the instances of class ω1 on that dimension

➢ we can linearly separate the two classes in the new feature space 𝑅3

𝑅2  → 𝑅3
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Let us consider a mapping 

function 

𝑍 ≔ ϕ( Ԧ𝑥)

which maps 𝑅2  → 𝑅3

Mapping to higher-dimensional space using a mapping function

Using the mapping

𝑧1 ≔  𝑥1
2

𝑧2 ≔ 2𝑥1𝑥2

𝑧3 ≔  𝑥2
2

the classes can be linearly separated.
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For the mapping, we need to map each instance 𝑥𝑖 to an instance 𝑧𝑖 in the new 

feature space using 𝑧𝑖 = ϕ(𝑥𝑖).

Incorporating ϕ() into the optimization problem yields

L α =  ෍

𝑖=1

𝑁

𝛼𝑖  −
1

2
෍

𝑖,𝑗=1

𝑁

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 ϕ 𝑥𝑖 ϕ 𝑥𝑗

Problem:

Obviously we cannot just use any mapping function. In the two previous examples, 

the mapping functions were ideal for the data set. They nicely separated the two 

classes. 

If we need to find specific mapping functions for each data set, the approach would 

be infeasible.
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Looking at the optimzation problem, we notice that 𝑥𝑖 and 𝑥𝑗 are represented by 

the inner product as ϕ(𝑥𝑖)ϕ(𝑥𝑗)

Now we use the so-called „kernel trick“:

Instead of actually doing the mapping using ϕ(), we replace the inner product by 

𝐾 𝑥𝑖 , 𝑥𝑗 = ϕ 𝑥𝑖 ϕ 𝑥𝑗

which leads to the following in the Lagrance-transformed optimization problem:

L α =  σ𝑖=1
𝑁 𝛼𝑖  −

1

2
σ𝑖,𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 𝐾 𝑥𝑖 , 𝑥𝑗  

Now we use a kernel function 𝑲 𝒙𝒊, 𝒙𝒋  that returns a value for each pair of 𝒙𝒋 

and 𝒙𝒋 has a parameter that can be tuned during training.

The kernel trick
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Two widely used kernel functions are

• polynomial kernel:    

𝐾 𝑥𝑖 , 𝑥𝑗 = (𝑥𝑖 𝑥𝑗 + 𝑟)𝑑     

sometimes with scaling parameter 𝛾 : 𝐾 𝑥𝑖 , 𝑥𝑗 = (𝛾𝑥𝑖 𝑥𝑗 + 𝑟)𝑑

• radial basis function kernel (Gaussian):

𝐾 𝑥𝑖 , 𝑥𝑗 =  𝑒
−

||𝑥𝑖−𝑥𝑗||2

2𝜎2 = 𝑒−𝛾||𝑥𝑖−𝑥𝑗||2
   where 𝛾 =

1

2𝜎2 

• For non-linear problems one typically starts with the radial basis function (RBF) kernel.

the kernel parameter is a hyperparameter

Kernel functions



# split into training and test set

train_data, test_data, train_labels, test_labels = train_test_split(

                            data, labels, test_size = 0.5, random_state=123)

# z-score scaling: determine scaling parameters

scaler = StandardScaler().fit(train_data)

# scale train set and test set

train_data = scaler.transform(train_data)

test_data = scaler.transform(test_data)

# soft-margin SVM with RBF kernel

# gamma="auto": SVC tries to set a good value 

model = SVC(kernel = "rbf", gamma = "auto", C = 1)

# train model on training set

model.fit(train_data, train_labels)

# classification of test set

predictions = model.predict(test_data)
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Support vector machines (SVM)
Non-linear decision functions
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Usually soft-margin SVMs with non-linear kernels like the RBF kernel are 

used.

During training the parameter 𝐶 and the kernel parameter (σ for the RBF 

kernel) are tuned so that the training data is separated with a low error 

rate.

Looking at classification results in the original feature space, it can be 

seen that this type of SVM finds non-linear decision functions.

Training and test of soft-margin SVMs with kernels
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Support vector machines

advantages    +  

• robustness: robust against noise in 
the training set if soft-margin SVMs 
are used

• highly-flexible decision boundary is 
kernel trick is used

• global optimum is found (for a given 
set of hyperparameters)

• no random parts involved, in contrast 
to ANNs

disadvantages    -

• in the standard case works only for 
numeric data 
(data transformation or specific 
kernels required)

• interpretability: poor interpretability, if 
the data is mapped to higher-
dimensional space



Perceptron – a simple artificial neural network: overview  

 one trivial artificial neural network consists of one node („neuron“) with multiple 

inputs and one output

 proposed by Rosenblatt in 1957 (see e.g. (Geron, 18) chapter  10)

 can be used for linear classification of two classes („binary classification“)

 data is passed to the input, one dimension/attribute per input

 e.g. input could be height, width, colour value of apples and pears

 the output is the classification result

 e.g. output could be: „it‘s an apple“ or „it‘s a pear“  
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Artificial neural networks 

Fundamentals: Perceptron

𝑜𝑢𝑡𝑝𝑢𝑡 𝑦

𝑥1

𝑥2

𝑥3



Artificial neural networks 

Fundamentals

Simple activation function: heavyside function

 𝑓 𝑥 = ቊ
0 𝑖𝑓 𝑥 < 0
1 𝑖𝑓 𝑥 ≥ 0

 ℝ → 0,1

 if the sum of of the network‘s weighted inputs is >0, the output is 1

 otherwise the output is 0

 an output of 0 or 1 allows to classify data into two classes based on inputs

75Prof. Dr. Andreas Theissler



In a nutshell: Perceptron – a simple artificial neural networks:

 can be used for linear classification of two classes („binary classification“)

 data is passed to the input, one dimension/attribute per input

 output is the classification result

▪ the inputs of each node 𝑥𝑖  are weighted with 𝑤𝑖  and summed up:

෍

𝑖=1

𝑛

𝑤𝑖  𝑥𝑖

▪ the sum is passed as to a so-called activation function 𝑓()

(e.g. heavyside) and 𝑓(𝑥) is the node‘s output

𝑜𝑢𝑡𝑝𝑢𝑡𝑖 =  𝑓(෍

𝑖=1

𝑛

𝑤𝑖  𝑥𝑖)
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Classification

Fundamentals

𝑜𝑢𝑡𝑝𝑢𝑡

𝑥1

𝑥2

𝑥3

𝑤2

𝑤3

𝑤1

𝑓(Σ)



Artificial neural networks 

Fundamentals

Exercise:  Calculations with perceptron

Calculate the neural networks output for the following inputs:

 input: 

 data point 1: (2, 1, 4) 

 data point 2: (1 , 2, 1)

 output:

 0 for class 0 (e.g. apple)

 1 for class 1 (e.g. pear)

 weights: (0.5 , 1.5 , -1.0)

 activation function: heavyside
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The bias term

▪ in most networks a so-called bias is added to each node

▪ the bias functions like an offset, it allows to change the output independently of the node‘s inputs

▪ geometrically it is the intercept of a plane described by 𝑤1  ∗  𝑥1 +  𝑤2 ∗  𝑥2 …

The formula of the weighted sum changes to

𝑤1  ∗  𝑥1 +  𝑤2 ∗  𝑥2 +  𝑤3 ∗  𝑥3 + 𝑏𝑘 =  𝑏𝑘 + ෍

𝑖=1

𝑛

𝑤𝑖  𝑥𝑖

The output is now given by 

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑓( 𝑏𝑘+ ෍

𝑖=1

𝑛

𝑤𝑖  𝑥𝑖)
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Vector form with bias term incorporated into vectors

Sometime in literature the bias term 𝑏𝑘 is incorporated into the vector of weights as  

𝑤0  and the vector 𝒙 is enhanced by 𝑥0 = 1 . 

This allows for a more compact formulation:

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑓(𝒘𝒙)

▪ where 𝒘 is the vector
𝑤0
𝑤1
𝑤2
𝑤3

  and 𝒙 is the vector
𝑥0
𝑥1
𝑥2
𝑥3
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Perceptron for more than two classes:

▪ one node can be used to separate two classes

▪ for more than two classes: one output node per class is used

➢ one output node corresponds to one class, decision is taken by selecting the maximum 

output value

➢ the ANN is now a linear classifier for multiple classes
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example: 
 f1 = 7 cm ; f2 = 6 cm 

example:

outut for apple = 1,0,0 

output for pear pear = 0,1,0  

x1

x2

apple

pear

b3

b1

banana

b2



Artificial neural networks 

Activation functions

Activation functions

The heavyside activation function 𝑓 𝑥 = ቊ
0 𝑖𝑓 𝑥 < 0
1 𝑖𝑓 𝑥 ≥ 0

was used in early networks. 

However, only linear classifiers can be built based on that function. 

A variety of activation functions have been proposed and used since. Some of them 

are:

 linear

 logistic (a sigmoid function)

 tangens hyperbolicus tanh (a sigmoid function)

 rectifier (the unit is then called called ReLU = rectified linear unit)

 Different activation functions can be used in layers of the network

81Prof. Dr. Andreas Theissler



Artificial neural networks 

Activation functions

Activation functions: linear

linear

 ℝ → ℝ; 𝑓 𝑥 = 𝑥
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Artificial neural networks 

Activation functions

Activation functions: sigmoid functions

sigmoid functions are S-shaped

they are differantiable

 logistic:

 ℝ → (0,1); 𝑓 𝑥 =
1

1+𝑒−𝑥

 tanh:

 ℝ → (−1, +1); 𝑓 𝑥 = tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

 sigmoid functions were used many years, and still are used

 they have problems when using many layers 

(not covered in this course, yet)
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Activation functions: sigmoid functions

 as can be seen, sigmoid functions

fulfill a non-linear mapping of inputs

to outputs

 the decision function with n parallel 

nodes is, however, still linear!
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Building an ANN:

▪ several neurons (nodes) in parallel are one layer

▪ several layers are connected sequentially

▪ prediction according to outputs at output layer 

(note: a two-class problem can be solved with one or two output nodes)

▪ by connecting the neurons

➢ a „network“ is set up:  the „artificial neural network“
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Multilayer perceptron (MLP)

Input data is passed to the 

input layer

Example: 
 f1 = 7 cm ; f2 = 6 cm 

The output layer outputs the 

results

example:

apple = 0.7 

pear = 0.2 

banana= 0.1 

=> prediction = max output: appleinput layer hidden layer output layer

f1

f2

apple

pear

banana



„Machine learning“ by an ANN:

▪ adaptation of the weights 𝑤𝑖, such that for input data the ANN takes the correct decision, 

i.e. output corresponds to class labels

(technique: „backpropagation“)

▪ iterative improvement by using many repetitions on the training set 

▪ one run on the entire training set is called an epoch, very many epochs are required

 example: input:  (8 cm ; 7 cm) + „apple“    =>    output:  apple = 0,2 ; pear = 0,8, banana = 0,0 

➢ adaptation of weights 𝑤𝑖, such that classification is correct 

(goal: apple = 1 ; pear = 0; banana = 0)
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Input data is passed to the 

input layer

Example: 
 f1 = 7 cm ; f2 = 6 cm 

The output layer outputs the 

results

example:

apple = 0.7 

pear = 0.2 

banana= 0.1 

  => prediction: appleinput layer hidden layer output layer

f1

f2

apple

pear

banana



Typical traditional ANN – the multi-layer perceptron (MLP)

There is an enormous variety of neural networks, the „traditional“ type that is 

typically used is as follows:

 feed-forward multilayer perceptron:

 „feed-forward“: the information flow is strictly from left to right

 „multilayer perceptron“: consists of multiple layers of perceptrons

 activation function: logistic or tanh 

 training using backpropagation

➢ artificial neural networks have recently become highly relevant again in the field 

of deep learning, where so-called deep neural networks are used

➢ in principle these deep neural networks work similar as shown here, but use 

some advancements
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Artificial neural networks

Functioning of ANNs: overview

Prof. Dr. Andreas Theissler

Artificial neural networks (ANNs)

advantages    +  

• robustness: robust against noise in 
the training set

• accuracy: highly flexible decision
boundaries

• can be used for different tasks
besides classification, e.g. 
forecasting, regression

disadvantages    -

• scalability: long training period

• interpretability: poor interpretability, 
the result of the training is a 
vector/matrix of weights

• network-structure and learning rate 
has to be pre-redefined

• random parts involved (e.g. 
initialization of weights)

• global minimum not guaranteed with
the standard backpropation gradient-
descent



 backpropagation is used for parameter tuning, where the parameters are 

the weights including the biases

 backpropagation uses gradient descent 

(dt. Gradientenabstiegsverfahren)

 the error at the output layer is iteratively reduced

 the weights are randomly initialized and tuned during the training 

process

 the weights are changed in a way to reduce the error at the output layer
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 in order to be able to reduce the error, the error needs to be calculated

 this is done using an error function also called loss function

 one common loss function is the „mean sum of squared errors“ MSE:

𝐸 =
1

𝑚
෍

𝑖=1

𝑚

( ෝ𝒚𝒊 − 𝒚𝒊)
2

 where 𝒚𝒊 is a vector with the label of the data point 𝑖, ෝ𝒚𝒊 is the networks output 

(prediction) for data point 𝑖, and 𝑚 is the number of data points

 ෝ𝒚𝒊 is a function of the weights

 note: there are other loss functions
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One-hot encoding

 in the loss function, 𝒚𝒊 is required to be a vector in order to be comparable to the networks 

output

 this is achieved by transforming the labels using one-hot encoding

 the class label then corresponds to the desired network output

For this example ANN:

 the one-hot encoded labels are apple = 
1
0
0

, pear= 
0
1
0

, banana = 
0
0
1

 predictions (outputs) are floating point numbers,

 e.g. for apple i.e. apple = 
0.8
0.1
0.1

 or 
0.6
0.2
0.2

 the goal is an output that is close to the one-hot encoded label, 

i.e. for an apple close to 
1
0
0
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 when the loss function 𝐸 = 0, the output for all data points corresponds to the 

class labels

 𝐸 = 0 is unlikely to be achieved

 note that correct predictions are possible without 𝐸 = 0:

Example: 

 an ANN shall have an output node for apple, pear and banana

 the output for one data point 𝑥𝑖, which is an apple, shall be
0.8
0.1
0.1

 decision will be apple

Exercise: What is the error for this data point ?

𝐸𝑖 = ( ෝ𝒚𝒊 − 𝒚𝒊)
2

= 𝑠𝑢𝑚(
0.8
0.1
0.1

−
1
0
0

)2 = (0.8 − 1)2 +(0.1 − 0)2+(0.1 − 0)2= 0.06
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 backpropagation uses gradient descent

 for a very simplified network:

 one input

 one output

 „trained“ with one data point

 ignoring the activation function (or assuming a linear activation function y=x)

 for this simplified example with one data point the loss function

𝐸 =
1

𝑚
σ𝑖=1

𝑚 ( ෝ𝒚𝒊 − 𝒚𝒊)
2 

can be rewritten with ෝ𝑦𝑖 = 𝑤1𝑥1:

𝐸 = (𝑤1𝑥1 − 𝑦1)2

 so the error is a function of the weight, 𝑥1 and 𝑦1 are constant

 we want this error to be minimal
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ො𝑦𝑥1 𝑤1



The loss function 

𝐸 = (𝑤1𝑥1 − 𝑦1)2

is obivously a quadratic function

 We want to find the error function‘s minimum

 We can use the function‘s derivative and find the value of 𝑤1, where the 

function is 0
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Using the chain rule (dt. Kettenregel)

 𝑓 𝑥 = 𝑔 ℎ 𝑥  → 𝑓′ 𝑥 = 𝑔′ ℎ 𝑥 ∗ ℎ′(𝑥) 

we find the derivative of 

𝐸 = (𝑤1𝑥1 − 𝑦1)2

to be

𝐸′ = 2 ∗ 𝑤1𝑥1 − 𝑦1 ∗ 𝑥1

 during training we do not know all function values, we only know 𝐸 for the current 

input 𝑥1 and the current value of weight 𝑤1

 starting with a random 𝑤1 we want to change 𝑤1 in a way that minimizes 𝐸
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We know the type of error function (quadratic in our example)

So we can calculate 𝐸 (𝑤1) and use the gradient 𝐸′(𝑤1) to find the direction and the extent of 

the desired change of 𝑤

 the gradient yields the direction and the extent of the weight update that reduces 𝐸 
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gradient of the error 

function at starting point



Learning rate

To control the extent of the weight update we introduce a learning rate 𝜂 ∈ 0,1  

The weights are iteratively (step-wise) changed as follows:

𝑤(𝑠𝑡𝑒𝑝 𝑡+1) = 𝑤(𝑠𝑡𝑒𝑝 𝑡) − 𝜂 ∗ 𝐸′(𝑤(𝑠𝑡𝑒𝑝 𝑡)) 

 the learning rate regulates the trade-off between convergence speed and the 

stability of the process to converge

 the learning rate is a hyperparameter

 for small networks a constant learning rate of 0.1 is commonly used
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Example: gradient descent

 in our example let 𝑥1 = 1 and 𝑦1 = 1, 𝜂 = 0.1 

 in other words for an input of 1 we want the 
network‘s output to be 1 

 (note that 𝑤1 = 1 is the obvious solution)

Starting with a random 𝑤1 = 3, the error in the first 
step is: 

𝐸 𝑤1 = (𝑤1𝑥1 − 𝑦1)2

= (3 ∗ 1 − 1)2= 4

the gradient for 𝑤1 = 3 is 

𝐸′ 𝑤1 = 2 ∗ 𝑤1𝑥1 − 𝑦1 ∗ 𝑥1

= 2 ∗ 3 ∗ 1 − 1 ∗ 1 = 4

We can calculate the weight of the next step:

𝑤(𝑠𝑡𝑒𝑝 𝑡+1) = 𝑤(𝑠𝑡𝑒𝑝 𝑡) − 𝜂 ∗ 𝐸′ 𝑤 𝑠𝑡𝑒𝑝 𝑡

𝑤(𝑠𝑡𝑒𝑝 𝑡+1) = 3 − 0.1 ∗ 4 = 2.6

steps of gradient descent:
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step 𝑤1 𝐸

1 3 4

2 2.6 2.56

3 2.28 1.63

4 2.02 1.04

5 1.82 0.67

6 1.65 0.43



 higher learning rates lead to faster changes

 step might be so large that minimum is over-stepped

 then the next step will change the weight in the opposite direction

 oscillation is possible

 might diverge instead of converge
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Backpropagation on multiple layers

In the loss function

𝐸 =
1

𝑚
෍

𝑖=1

𝑚

( ෝ𝒚𝒊 − 𝒚𝒊)
2

ෝ𝒚𝒊 is the vector of the output layer, e.g. 
0.8
0.1
0.1

 each component of this vector is given by the weighted sum of that node‘s inputs 

with the activation function applied, i.e. 𝑓(𝒘𝒙) = 𝑓(σ𝑖=0
𝑛 𝑤𝑖  𝑥𝑖)

 this is recursive, i.e. a node‘s output in layer N depends on the node‘s inputs, 

which depend on the nodes‘ outputs of layer N-1, ...

 in addition to the previous simplified example, the derivative of the activation 

function is incorporated into the gradient descent steps
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Backpropagation – a „quick generalization“ to multiple layers 

In the loss function

𝐸 =
1

𝑚
෍

𝑖=1

𝑚

( ෝ𝒚𝒊 − 𝒚𝒊)
2

ෝ𝒚𝒊 is the vector of the output layer, e.g. 
0.8
0.1
0.1

 each component of this vector is given by the weighted sum of that node‘s inputs 

with the activation function applied, i.e. 𝑓(𝒘𝒙) = 𝑓(σ𝑖=0
𝑛 𝑤𝑖  𝑥𝑖)

 this is recursive, i.e. a node‘s output in layer N depends on the node‘s inputs, 

which depend on the nodes‘ outputs of layer N-1, ...

 in addition to the previous simplified example, the derivative of the activation 

function is incorporated into the gradient descent steps
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The weights of all nodes need to be tuned in order to reduce the error

Each iteration of backpropagation has the following two steps:

1. forward propagation: the data is passed to the input layer and the error is calculated at the 

output layer for all passed data points

2. using gradient descent, the weights of all nodes in all layers are changed using gradient 

descent 

 one iteration with all data points is called an epoch

 this process is repeated many times, typically thousands of iterations
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forward propagation

backward propagation



An ANN has a high number of weights

 so the function to be optimized is not as simple as shown in the example for one weight by 

the quadratic function

 it is a function of very many variables

The process, however, is the same: 

 the function‘s gradient is calculated in order to determine the direction and extent the of the 

weight update

 instead of the derivative, the partial derivatives are used

One can imagine that process for two variables as a skate bowl, where we roll a ball and we 

want it to stop at the minimum:
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# split into training and test set

train_data, test_data, train_labels, test_labels = train_test_split(

                            data, labels, test_size = 0.5, random_state=123)

# z-score scaling: determine scaling parameters

scaler = StandardScaler().fit(train_data)

# scale train set and test set

train_data = scaler.transform(train_data)

test_data = scaler.transform(test_data)

# create neural network

model = MLPClassifier(hidden_layer_sizes=(20,20,), 

                      activation='relu', solver='adam', max_iter=1000,

                      learning_rate_init=0.001, momentum=0.9)

# train model on training set

model.fit(train_data, train_labels)

# classification of test set

predictions = model.predict(test_data)
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Deep Learning – an overview

Deep Learning uses ANNs as we have seen them so far, with some 

advancements

 more layers

 other activation functions

 advanced training methods

 additional methods to avoid overfitting

 Deep Learning needs a lot of training data and requires long training

 the basic idea is not to do feature engineering, but let the Deep 

ANN determine the features it requires to separate the data points
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Deep Learning – an overview

in addition: Deep Learning uses network architectures for specific data 

types, e.g.

 CNNs for images

 RNNs for time series or text

In general: The distinction between „Deep Learning“ and ANNs without 

Deep Learning is not too strict. Many ideas have been around before the 

term Deep Learning was introduced.
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In order to monitor the process during training, the ANNs error in the current step is 

calculated not only on the training set, but on a so-called validation set

this is an approach to try to detect overfitting

▪ this validation set is split from the initial training set 

▪ during a step multiple validation sets can be extracted using “cross-validation“

▪ Recommendation: a „blind test set“ should still be kept, 

i.e. validation set is not the same as the test set

▪ the blind test set can be used as a final quality gate

after the training process
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Early stopping

 observation: - error on training set (train error, train loss) decreases

  - error on validation set (test error, test loss) decreases up to some point 

    after that point, the error on the test set increases => overfitting

 idea: stop training when overfitting starts („early stopping“)

 stop training when error on validation set (validation error, validation loss) increases

 since the errors are not as stable as shown here, the errors are monitored during training and 

training is stopped after a „stable“ increase of the validation error
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Avoiding overfitting
Ensemble

„Ensemble“ – combining several models

 observation: each model has different strenghts and weaknesses,

  i.e. each model may overfit differently

 idea:  combining many different models („ensemble“)

 Some options:

▪ ANNs with different architectures (number of layers, number of nodes, etc.)

▪ same ANN architecture trained on different subsets of the data, hence the weights 𝑤𝑖 will 

be different

110

Final result: majority voting

Example:

ANN 1: „apple“

ANN 2: „pear“           = „apple“

ANN 3: „apple“  

data

ANN 1

ANN 2

ANN n

voter
...
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Avoiding overfitting
Dropout

Dropout

 observation: the idea of an „ensemble“ ist good, 

  but is computationally expensive and requires a lot of training data

   

 idea:  use different representations of the same ANN

 Functioning:

▪ for each data point („feature vector“), randomly deactivate nodes and their connections

▪ deactive nodes with some probability, e.g. p=20% in input layer, p=50% in hidden layer

▪ when using the network to predict data, all nodes are active

111

: active node

      : inactive node
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Avoiding overfitting

▪ There are more techniques to avoid overfitting, e.g. L1-regularization, L2- 

regularization

▪ Recommendation:

 early stopping: is typically used

 ensemble: depends on the availability of data and computational power

 dropout: is typically used, particularly when for ANNs with many layers

 A combination of multiple techniques is often used, e.g. early stopping 

and dropout
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Activation functions for Deep ANNs

▪ commonly used activation functions: instead of logistic function Deep ANNs use rectifier 

functions (and variants of it)

 rectifier:  ℝ → 0, ∞ ; 𝑓 𝑥 = 𝑚𝑎𝑥(0, 𝑥) 

 the activation function is called rectifier, the unit is then called called ReLU (rectified linear unit)

 (these terms are often used as equivalents also they are not)
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Activation functions for Deep ANNs

Softmax function

For classification problems, the output layer typically uses the softmax activation function

▪ This function scales the values such that the sum of all output nodes is 1

▪ The output of one node can then be interpreted as a probability

Example: output might be at the nodes:

 apple: 0.7 , pear: 0.2 , banana: 0.1

 so the ANN predicts that the data point is an apple with a probability of 0.7
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 Deep Learning requires a large training set

 Epoch learning, i.e. adapring the weights after having seen all data points,  

would not converge, since it would take very long

 Mini-batch updating is used

mini-batch updating (=stochastic gradient descent (SGD) with batch size > 1): 

 a small number of random samples (e.g. 50) are taken from the training set

 the mean error is calculated (summing up the errors and dividing by the number 

of data points)

 the weights are updated

 faster update of weights, but updates depend only on a small subset of the data

 common approach for Deep Learning
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Momentum optimization

For smaller batch sizes (mini-batch updating or case updating), the change of 

weights might be instable

A momentum term can be introduced, that incorporates the previous weight update 

into the current weight update

i.e. if the weights were rapidly updated in positive direction and the current batch 

indicates an update in negative direction, this change of direction is smoothed

𝑤(𝑠𝑡𝑒𝑝 𝑡+1) = 𝑤(𝑠𝑡𝑒𝑝 𝑡) − ( 𝛽𝑚 +  𝜂𝐸′(𝑤(𝑠𝑡𝑒𝑝 𝑡)) )

 where 𝑚 is a vector with the previous gradients

 and 𝛽 is a hyperparameter between 0 and 1 (0 = no momentum, 1 = maximal 

momentum). A common value for 𝛽 is 0.9. 
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Learning rate decay / adaptive learning rate

 The learning rate 𝜂 can be gradually decreased during the training process

 This allows to take large steps at the beginning and finer steps towards the end 

of the training process

 enhanced versions of backpropagation that use an adaptive learning rate are 

AdaGrad and RMSProp

Learning rate decay / adaptive learning rate + momentum optimization

 momentum optimization and adaptive learning rate is combined in ADAM 

(Adaptive momentum estimation)
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[…]

# train test split

train_data, test_data, train_labels_raw, test_labels_raw = train_test_split(

data, labels_raw, test_size = 0.5)

scaler = StandardScaler().fit(train_data) # z-score

train_data = scaler.transform(train_data)

test_data = scaler.transform(test_data)

# one-hot-encoding of the labels is required for neural networks

# i.e. instead of labels 1,2,3 => vectors (1 0 0), (0 1 0), (0 0 1)

def encodeLabelsOneHot(in_labels):

labels_onehot = to_categorical(in_labels)

return labels_onehot

train_labels = encodeLabelsOneHot(train_labels_raw) # call own function

test_labels = encodeLabelsOneHot(test_labels_raw)   # call own function

#extract number of features and classes

n_attributes = data.shape[1]

n_classes = train_labels.shape[1]
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#create neural network, see API reference e.g.: https://keras.io/

model = Sequential()

#input layer is created implictly, based on input_dim

model.add(Dense(units=20, activation='tanh', input_dim=n_attributes)) #hidden layer

model.add(Dense(units=10, activation='tanh')) #hidden layer

model.add(Dense(units=n_classes, activation='softmax')) #output layer

optim = Adam()

model.compile(loss='mean_squared_error', optimizer=optim, metrics=['accuracy'])

# train the model

model.fit(train_data, train_labels, batch_size=20, epochs=100)

# classification of test set

pred = model.predict(test_data)

# get from network outputs to classes

predictions = np.argmax(model.predict(test_data), axis=-1)

cm = confusion_matrix(test_labels_raw, predictions)
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Experimenting with ANNs

120

• https://playground.tensorflow.org

• https://js.tensorflow.org/

Experimental environments

• Pre-installed environments available

• easy to use GPUs or TPUs

Cloud-based services
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Classfication: test

Prof. Dr. Andreas Theissler

Possible answers: 

• Does the selected feature space allow us to get good 

results?

• From the plot above it becomes obvious that any classifier 

will ouput weak results using this one feature.

• Did we scale the features?

• If not, the features are weighted differently.

• Have we used instances from the training set to 

determine the classifier‘s accuracy?

• In that case we get very good results after training, and 

possibly very weak results on unseen data.

training set

test set

Question: 

What could be reasons for a classifier to output very weak results?



 multi-class problem: 11 fault types, i.e. 11 classes

 48 features

 approx. 50.000 feature vectors
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Case Study 

Classification of fault types in electromagnetic drive systems

runtime of XGBoost 

with a growing number of 

used features

accuracy of different classifiers

on unscaled and scaled input data

Grüner, T., Böllhoff, F., Meisetschläger, R., Vydrenko, A., Bator, M., Dicks, A., & Theissler, A. (2020). 

Evaluation of Machine Learning for Sensorless Detection and Classification of Faults in Electromechanical Drive Systems. 

Proceedings 24th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Procedia 

Computer Science, Volume 176, pages 1586-1595, 2020, Elsevier. ISSN 1877-0509

https://doi.org/10.1016/j.procs.2020.09.170

https://doi.org/10.1016/j.procs.2020.09.170


 decision trees can get messy…
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Case Study 

Classification of fault types in electromagnetic drive systems



XGBoost

 classification with a subset of features

 features are selected based on feature importance by XGBoost
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Case Study 

Classification of fault types in electromagnetic drive systems

XGBoost: 

using feature importance to select subset of features



Further readings

Machine Learning + Deep Learning:

 J. Han, M. Kamber, J. Pei (2011). Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann 

Publishers, 3rd Edition. ISBN 978-0123814791

 Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Education 

(ISE Editions).

 A. Theissler (2013). Detecting anomalies in multivariate time series from automotive systems. PhD Thesis. Brunel University London

 Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition, Fourth Edition.Academic Press, 4th edition.

 “Deep Learning” (2016). 

Ian Goodfellow, Yoshua Bengio, Aaron Courville. kostenfrei online: www.deeplearningbook.org

 J. Han, M. Kamber, J. Pei. Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann 

Publishers

 Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Education 

 Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition, Fourth Edition. Academic Press

 Breimann (2001). Random Forests

https://link.springer.com/article/10.1023/A:1010933404324

 Friedman, J.H. (2000), Greedy Function Approximation: A Gradient Boosting Machine. 

Annals of Statistics, year = 2000, volume = {29}, pages = {1189--1232}

 Chen, Tianqi and Guestrin, Carlos (2016), XGBoost: A Scalable Tree Boosting System.

Proceedings of the 22nd ACM SIGKDD 2016

https://doi.org/10.1145/2939672.2939785

Papers on Overfitting:

 „Dropout: A Simple Way to Prevent Neural Networks from Overfitting“ (2014)

 Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan

 Journal Machine Learning Research. Jan. 2014, Vol. 15, Number 1, pages 1929-1958

 „Ensemble based systems in decision making“ (2006)

Robert Polikar, IEEE Circuits and Systems Magazine. 2006, Vol. 6, Issue 3, pages 21-45
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