Seminar Grundlagen Machine Learning
Methoden und Algorithmen zur praktischen
Umsetzung mit Python

03: Classification




Fundamentals
Defining classification

Remember the introduction to “clustering”?
The task of clustering is to group instances
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Fundamentals
Defining classification

Example 1: Classify the instances as one of the three classes “circle”,

L 11

“square”, “triangle”

0°
eC

class: circle

A

A class: square

class: triangle
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Fundamentals: Machine Learning — on one slide

Classification of apples and pears

1. training set + class labels are passed to a model
2. the model learns a decision function

training set

Jfeature vectors“ +

width: 7cm, height: 6cm + ,apple”

1. test data is passed to model without class labels
2. the model classifies the test data using the decision function

3. results are compared to the true class labels

width: 6 cm, height: 5 cm
width: 4 cm, height: 8 cm

class labels” . .
width: 5¢cm, height: 9cm + pear”
1 1 3
2 2 pear LR
i) Q0 A
feature space” T T
apple “‘
-
Breite Breite error
(simple 1 .
error 4 25%
measure)
Ldecision function® I )
4
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Fundamentals
Machine learning

Separation of training and test set: ,,hold-out*

- split the labeled data set into training set and test set

> we should not use instances of the training set during test and
vice-versal

&

tralnlng set

labeled data set test set
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Fundamentals
Machine learning

Separation of training and test set: ,,cross-validation®

- typically there is a lack of labeled training data

> one common method is cross-validation with ,,k-fold“:
- randomly split the training set into k chunks

« run training and test k times using each chunk as test set once and the remaining k-1
chunks as training set

-« outputs k accuracies, that we can average
=> can also be used to estimate the variability of the expected results

| estsel
— e
SEE e

labeled data set fold 1 fold 2 fold 3 fold 4
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Fundamentals
Statistical background

p(flo)

The Bayes error

s Bayes error

In applications, the Bayes error is usually unknown!
Calculating the Bayes error requires knowledge of:

1. the type of probability density functions

2. the statistical parameters of the probability distributions
3. the prior class probabilities
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Fundamentals
Machine learning

Evaluation criteria for Machine Learning models (Han et al.):

accuracy
speed (computational costs)

robustness (robustness against noise in training sets)
scalability (e.g. computational costs)

interpretability (understandability of the classifier or its results)

ok~ bR
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Fundamentals
Machine learning: classification

Measuring the classification results

In the test phase, the number of correctly and incorrectly classified instances are
counted and stored in the so-called
“confusion matrix” (=“contingency table”):

(Note: rows and columns are not consistent in tools and literature!
Might be vice versa!)

,square” ,circle®

,square” true ,squares”: false ,squares®:
,circle” false ,circles™: true jjciriles“:
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Fundamentals
Classification results

Confusion matrix
» measuring classifier outputs (here for two classes):

POSITIVE NEGATIVE
positive TP FP
negative FN TN

Based on the confusion matrix, a variety of measures can be calculated (see e.g.

(Fawcett 04)). Some of them are: .
TP: number of true positives

; overall accuracy = TP+TN _ TP+TN FP: number of false positives
' M POSITIVE+NEGATIVE FN: number of false negatives
TP Tp TN: number of true negatives
2. truepositiverate TPR = ——— = POSITIVE = TP + FN
POSITIVE — TP+EN NEGATIVE = TN + FP
. . TP TP M = number of instances
G PTeCiSlON,os = = Citive . TP+FP = POSITIVE + NEGATIVE
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Fundamentals
Classification results

The digit in the picture is a 7

For many classes, the confusion matrix becomes hard to rea
Example: classification of handwritten digits 0...9 (,MNIST®)

Reference
Prediction 0 1 2 3 4 5 6 7 8 9 —
0 973 0 3 0 2 2 6 2 5 3
1 0 1127 2 0 1 0 5 5 9 A
2 0 2 1013 1 2 0 1 11 3 |
3 1 0 2 997 0 10 0 1 3 5
4 0 0 1 0 963 1 4 o 5 7
5 1 0 1 4 0 865 4 1 3 3 o agt e ptaeis s
6 2 2 1 0 5 6 941 0 5 0
7 1 0 5 3 1 1 0 1006 4 6
8 1 4 ‘. 2 1 4 0 1 944 0
S 1 o0 0 3 7 3 0 4 5 980

Accuracy : 0.9809

Statistics by Class:
Class: 0 Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 C(Class: 6 Class: 7 Class: 8 Class: 9
0.9929 0.9930 0.9816 0.9871 0.9807 0.9697 0.9823 0.9786 0.9692 0.9713
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Fundamentals
Classification results

» Interprete the confusion matrix on the previous slide
» Name three findings you can see in the matrix

» Possible solutions:

6 digits that are ,9“ were misclassified as ,,7"

£“

980 digits that are ,9" were correctly classified as ,9

98% of all digits were classified correctly
,0" classified as ,,0“: 99,29%, ...

Prof. Dr. Andreas Theissler
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Artificial neural networks (ANNS)
Overfitting and underfitting

» overfitting: the classifier learns the specifics of the training set, but does not generalize well

» underfitting: the classifier does not learn the training set well enough (e.g. because the decision

functions are not flexible enough)

Héhe [cm]

Breite [cm]

sunderfitting*:
error on training set: high
error on test set: high

Héhe [cm]

Breite [cm]

good model:
error on training set: low
error on test set: low

Héhe [cm]

Breite [cm]

soverfitting“:
error on training set: very low
error on test set: high

Prof. Dr. Andreas Theissler
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Classifiers
Linear classifiers

General description of linear classifiers

the idea:
separate classes with a linear
decision function

f

4

\

decision function

class w,

f

\ 4
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Classifiers
Non-linear classifiers

The ,,XOR-problem*

> linear classifiers have a strong limitation:

- they work well when the classes are linearly separable, if this is not the case
they can’t find a good solution

> let’s have a look at the so-called “XOR-problem”:
- a data set with only four instances that appears to be quite simple
- try to separate the two classes using any type of linear classifier

f2

class w,

+ + class w,

A

h
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Classifiers
Non-linear classifiers

Introducing non-linear classifiers

- to overcome the problem of linearly non-separable data sets: classifiers with
non-linear decision boundaries are introduced in the following slides

M

£

class w,

class w,

fa

L 2
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Classifiers
Non-linear classifiers

nearest neighbor (NN, 1-NN)

- theidea:
an instance belongs to the class of its nearest
neighbor

- how it works:
1. store all instances from a training set

2. for an unclassified instance find the nearest
neighbor in the training set

3. assign the class of the nearest neighbor
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Classifiers
Non-linear classifiers

nearest neighbor (NN, 1-NN)

N

* +
+ +
o + o+ e t
+ + 4+
class w, +
+ +
t, + +
+
+ 4+ B
M -
+ &4+ class w,
+ L.

+ 4+
N
®

unclassified instance

nearest neighbor

f

v
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Classifiers
Non-linear classifiers

nearest neighbor (NN, 1-NN): evaluation

© interpretability
« easy to implement
 can be applied to any type of

data set, If a distance
measure can be defined

« training phase is extremely
fast (training corresponds to
just storing the instances)

~

advantages +

a _ n

* robustness: sensitive to
individual outliers in the
training set

« scalability: classification can
be slow, since it requires
visiting of all instances to find
the nearest neighbor

~

disadvantages
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Classifiers
Non-linear classifiers

k-nearest neighbors (k-NN with k > 1)

the idea:

an instance belongs to the class of its k nearest
neighbors

how it works:
store all instances from a training set
select the parameter k

for an unclassified instance find the k nearest
neighbor in the training set

4. classify the instance based on the majority class

in the k nearest neighbors (typically odd numbers
are used: 3,5, 7, ...)
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Classifiers
Non-linear classifiers

» k-nearest neighbors (k-NN)

N

+ + 4+t t * +
+ +
~ AR E R S
(T +
+ + 4+
class w, +
+ +
t, + +
+
+
+ +
M -
+ &4+ class w,
+

3 nearest neighbors (k=3)

unclassified instance

v

f
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Classifiers
k-nearest neighbours (k-NN)

# sklearn imports

from sklearn.datasets import make moons

from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion matrix, accuracy score

from sklearn.preprocessing import MinMaxScaler

# create data set

data, labels = make moons(n samples=500, noise=0.1)

# split into training and test set

train data, test data, train labels, test labels = train_ test split(data,
labels, test size = 0.5)
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Classifiers
k-nearest neighbours (k-NN)

[...]
# min-max scaling: determine scaling parameters

scaler = MinMaxScaler () .fit(train data)

# scale train set and test set
train data = scaler.transform(train data)

test data = scaler.transform(test data) k-NN

# create k-nearest neighbours with k = 3

model = KNeighborsClassifier (n neighbors=3)

>
# train model on training set

model.fit(train data, train labels)

# classification of test set

predictions = model.predict(test data)
acc = accuracy score(test labels, predictions)

cm = confusion matrix(test labels, predictions)
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Classifiers
Non-linear classifiers

k-nearest neighbors (k-NN): evaluation

(interpretability h (scalability: classification can be h
- easy to implement slow, since it requires visiting of

- can be applied to any type of all instances to find the k nearest

data set, if a distance measure neighbors
can be defined

« training phase is extremely fast
(training corresponds to just
storing the instances)

advantages + disadvantages -
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Decision trees

The idea:

separate the classes in the training set by
recursively splitting the data by thresholding
individual features

The algorithm:
1. create a node

2. select the best split using some
splitting criterion

3. grow branches according to the split
(binary vs. multiple branches)

4. recursively continue with 1. until some
stopping criterion is met or all branches
contain only feature vectors from one
class (,purity®)
=> pottom nodes become ,leaves"®

feature 1 < 4

yes

no

feature 2 <5

feature 3< 8

yes no

Prof. Dr. Andreas Theissler
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Decision trees

» learning a decision tree from a training set is referred to as decision tree induction
» to avoid overfitting, the resulting tree can be pruned

» there are different splitting criteria, i.e. techniques to identify the features to be used in the
current split together with the threshold

» per split/node one feature is used (univariate split)
» however, there are advancements of trees combining features (multivariate splits)

» common decision tree algorithms:
» ID3 (Quinlan, 1986)
» C4.5 (Quinlan, 1993)
»  C5.0 (Quinlan, 2017)
» CART (Classification and Regression Trees) (Breiman, 1984)

» although having been around for many years, decision trees are worth to study:
» they are interpretable (a currently hot research topic in Al)

» they are the components of powerful, advanced machine learning methods like random forests and
gradient boosting machines (e.g. xgboost)
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Classifiers
Non-linear classifiers

Decision trees

- the resulting decision boundaries are piecewise
linear

- a decision tree can be transformed into a rule-
base:
if feature 1 <x ... i

2

class wy

- (there are advanced techniques using a
combination of several features per node)

class w,

fi
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Decision trees
Splitting criterion: information gain

Information gain uses entropy from information theory (Shannon)

» the split with the highest information gain is chosen, i.e. the split that minimizes the
information needed to classify the remaining feature vectors

» in other words: the split that creates the least "impurity*
» a split can create multiple branches (N>2)

» in the context of decision trees this entropy corresponds to a measure of impurity

The entropy is measured as information in bits and is calculated by:

IC]

1(D) == pi+log, ()
i=1

» with D: data set, |C|: number of classes, p; = 1€ in DY probability that a feature vector in

D]
D belongs to class C;
» I(D) =0..1, where I(D) = 0, if all feature vectors belong to the same class
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Decision trees
Splitting criterion: information gain

In order to find the best split, the entropy for all possible splits is calculated. For a split A:

|51

with:

» |S|: number of possible splits, i.e. for discrete, categorical or binary values, the number
of different values

» |Dj|: number of feature vectors in partition j

1Dl

3 o in order to weight according to the number of feature vectors per partition

From all candidate splits, the one is selected that maximizes the information gain IG :
IGSplitA = I(D) - I(Dsplit A)

» in other words: IGg,;;: 4 determines how much is gained by the splitting candidate A
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Decision trees
Splitting criterion: information gain

xu:hl.n-h-'-iwul

11
12
13
14

Exercise: ,Information gain“

Calculate the information gain for the

1. Entropy of D:

_9 . —5
Y Pp=1; 5 PnT

» I(D) ——Zl 1pl*logz(pi)

. . . 9 9 5 5 _
following two-class problem with categorical =~z logz< ) T2 * l0g2 (g) = 0.94 bits
attributes

» number of feature vectors: 14 2. Entropy of possible split by feature ,,outlook“
»  two classes: P and N » |S| =3 ; S =(sunny, overcast, rain)

' » |Di|=5; |D;l=4; |D3| =5 : (possiblesplits by S)
» 9 feature vectors of class P, 5 of class N

‘ _ |5| ID,I 3 out of the 5 feature
Attributes Class ' I(Dsplu: Outlwk) - ] 1|p| I(D ) vectors with
—_ : 5 2 2 3 3 feature=,sunny“ are
Oultlook Temperature Humidity - 12 |~ 5 *log, 5/ & *log, 5 of class N
sunny hot high M 4+ — % _i* logz <i>
sunmny hot high N 14 4 4
rain h{?:d ]h"g: :: + 3 l <3> 2 l <2> 0.694 bit
raun m g —_— % —— % ng — ] — — % ng - = its
rain cool normal P 14 5 5 5 5
rain cool normal
overcast cool normal P ) ) ) ]
sunny mild high N 3. Information gain for this split:
! ool normal P .
::;:Iny :nild nu:::al P 4 IGsplit Outlook = I(D) - I(Dsplit Outlook) = 0.246 bits
sUnny mild normal P
overcast mild high P 4. Repeat this for features ,,Temperature“ and ,,Humidity*
avercast hot normal P and find maximum information gain.
rain mild high ™

adapted from original ID3 paper: (Quinlan, 1986)
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Decision trees
Splitting criterion: Gini index

Gini index finds that binary split that minimizes the “impurity

The Gini index for D is calculated:

IC]

Gini(D) =1 — Z p;2
i=1

with notation equivalent to information gain:

» D: data set, |C|: number of classes, p; = 'C"lgllDl . probability that a feature vector in D

belongs to class C;

» Gini(D) = 0...1, where Gini(D) = 0, if all feature vectors belong to the same class,
which is the ideal case

Prof. Dr. Andreas Theissler 31



Decision trees
Splitting criterion: Gini index

In order to find the best binary split, the weighted sum of the Gini indices Gini(Dj) resulting
from the two partitions is calculated:

. _ADel Do ..
Ginigpir a(D) = W* Gini(D;) + D] * Gini(D,)

The reduction of impurity is then calculated by:

AGini = Gini(D) — Ginigyir 4(D)

» All possible split candidates are tested, and the one is selected where AGini is maximum.
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Decision trees
Splitting criterion: Gini index

Mo,

Iu:h'.ﬂ-h-'-—"”‘—‘l

11
12
13
14

Exercise: ,,Gini index “

Calculation of Gini index for the following

1. Gini of D:

two-class problem with categorical attributes ~ on the feature ,Outlook” as

(1: sunny ; 2:rain or overcast)

5

_)2

14

Gini creates binary splits, so let's define a split

» number of feature vectors: 14 o ]
3 =— = —
» two classes: P and N Pp=1 PN =14
2
.. C 9
» 9 feature vectors of class P, 5 of class N » Gini(D) =1-3!% p2=1- (E) _ (
0.46
Alttributes Class
Outlook Temperature Humidity 2. Glnl. Of partltlons
Glnlspllt outtook (D)
sunny hot high M | 1| |D2|
SUnmy hot high M * Gini(D * Gini(D — e
overcast hot high P |D| ( 1) + |D| ( 2)
rain mild high P
rain cool normal P
rain cool normal N egi . ..
overcast cool normal p 3. Calculate the split‘'s improvement of Gini
sunny mild high N INi — INi — INi .
sy i meh | N AGini = Gini(D) Ginigyyir 4(D)
rain mild normal P
sunny mild normal P ] ] ] ]
overcast mild high P 4. Repeat this for other split options on this
overeast . :T:;;““' «  feature and for the features ,, Temperature“

adapted from original ID3 paper: (Quinlan, 1986)

and ,,Humidity* and find the best split.

Prof. Dr. Andreas Theissler
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Decision trees
Splitting criteria

>
>

in addition to Gini and entropy, there are more splitting criteria.
Gini and entropy are the most common ones.

the splitting criterion can be viewed as a hyperparameter, so various can be tested

results with Gini and entropy are often not very different, if results are different entropy
tends to yield more balanced trees (Geron, 2019)

computation of Gini is faster

in the python-library scikit-learn, Gini is the default

Prof. Dr. Andreas Theissler
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Decision trees
scikit-learn

.Eeam

» https://scikit-learn.org

» In the python library scikit-learn (sklearn) a decision tree
Is available with the class DecisionTreeClassifier

» uses CART (Classification and Regression Trees) (Breiman, 1984)

» Some important parameters:
» max_depth, allowing to prune the tree
» criterion, splitting criterion: Gini index is the default, entropy can be used
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Decision trees
scikit-learn

.ﬁewm

1 # imports

2 # own file containing the code with the created data sets

3 from my_datasets import * TTaining

4

5 # own file containing code to plot decision functions in a 2D plot . . . .

6 from my plotting import my plotDecisionFunction 1 # common machlqe.Learnlng mode%s.are'lncLuded in sklearn as classes

7 2 # here the decision tree classifier 1is used

8 import numpy as np 3 model = DecisionTreeClassifier()

9 import matplotlib.pyplot as plt
10 1 # train model on training set
11 # sklearn imports 2 model.fit(train_data, train_labels)
12  from sklearn.model_selection import train_test_split
13 from sklearn.tree import DecisionTreeClassifier DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
14 from sklearn.metrics import confusion_matrix, accuracy_score max_features=None, max_leaf_nodes=None,

min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
.. min_weight_fraction_leaf=0.0, presort=False, random_state=None,

Decision tree splitter="'best’)

1 # own data set

2 data, labels = createData_XOR()

Test

1 # split data set into train and test set ("hold-out")

2 # (random_state just used for reproducible plots!) # chss?fication of test set

3 # param test_size allows to specify the percentage (0..1) of the test set predictions = model.predict(test_data)

4  train_data, test_data, train_labels, test_labels = train_test_split(

5 data, labels, test_size = ©.5, random_state=123) print("### Results on test set: ###")

print("Overall accuracy: ", acc)

print("Confusion matrix")
cm = confusion_matrix(test_labels, predictions)

1
2
3
4
5
6 acc = accuracy_score(test_labels, predictions)
7
8
9
(*]
1 print(cm)

### Results on test set: ###
Overall accuracy: 1.0
Confusion matrix

[[162 0]

[ @ 98]]
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Decision trees
scikit-learn

Decision tree with Python and scikit-learn

Decision tree on XOR data set

1 data, labels = createData_XOR()
2
3 # split data set into train and test set
4 train_data, test_data, train_labels, test_labels = train_test_split(
5 data, labels, test_size = 9.5, random_state=123)
6 # training
7 model = DecisionTreeClassifier() e
8 samples = 200
; . . value =[98, 102]
9 model.fit(train_data, train_labels) class = class 2
16 TruV false
11 # plot decision function that was learned from training set feature 1 <= 0.398 | - ["foarure 1 <=0.556
12 my_plotDecisionFunction(train_data, train_labels, model, title = "decision tree") an",';;::?; ,ﬂpﬁfﬁ
13 e | (R
class = class = class

14 # classification of test set
15 predictions = model.predict(test_data)

|

feature 2 <= 0.436

16 cm = confusion_matrix(test_labels, predictions) gini = 0.474
samples = 96
17 value = [37, 59]

class = class 2

decision tree

feature 2

feature 1
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Decision trees
Evaluation

advantages + disadvantages -

* interpretability: results are human- « decision boundaries are not very

readable, which is a benefit for many
domains (e.g. medical systems)

» works with numerical and categorical
data

* no scaling of input data required
 can return feature importance

» can also be used for regression
(regression trees)

flexible (piecewise-linear), they
evaluate one feature at a time

at each step the locally optimal
decision is made, does not
necessarily lead to a globally optimal
solution

a tree may overfit the data
(pruning should be used)

slightly different data (e.g. by
randomly splitting train and test set),
may lead to completely different trees
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Random forests (Breiman, 2001)

The idea: T, feature 1 <4
Create many decision trees and combine the
result with majority voting. ye 0
Assumption: the result of a combination of EAiepPlts IEAIEISidd
different classifiers is likely to be better than of a
. e yes no
single classifier.
A random forest is an ensemble method,
l.e. a random forest is an ensemble of trees.

The algorithm:

1. create many different decision trees
T, ...Ty Ty feature 5<7

2. the different trees are created by
randomly subsampling the features and ye
the data set at each node of each tree

3. a feature vector in the test set is classified
by each tree T;

4. the classification result is the most
frequent result from T; ... Ty,
(majority voting)

/

feature 3 <1 feature 1 <0

no

@k<
D
2
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Random forests

A random forest is an ensemble of randomly created, different decision trees
(base classifiers).

» the number of trees is a hyperparameter (e.g. 100)

< > base classifier
1
random - — voter
samplin ase classifier
data (ba IOing) 2 (majority
o voting)
— base classifier
n
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Random forests

An ensemble performs best, if the base classifiers are diverse and unrelated.

In a random forest this is achieved by:

1. bagging: training each of the decision trees with a different subset of the data

»

»

bootstrap aggregation (bagging) is typically used for this

in bagging, from a data set D consisting of N feature vectors, N of these feature vectors are
randomly drawn with replacement and become the training set A

I.e. a feature vector can be drawn multiple times
the feature vectors not drawn become the test set B
it can be shown, that on average 63.2% of the feature vectors are in the training set

2. feature subsampling: randomly selecting subsets of features at each node of each tree

»

4

for example for |F| features, /|F| can be selected as candidates at each node
using a splitting criterion, the best split is determined from this subset

Prof. Dr. Andreas Theissler
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Random forests
Evaluation

advantages +

« avoids overfitting

* reduces the variance

« often better results compared to single trees
» works with numerical and categorical data

* no scaling of input data required

» works for large, high-dimensional data sets,
since at each split only a subset is tested

* can return feature importance

* can also be used for regression

disadvantages -

* in contrast to single decision trees, a
random forest is not (easily) interpetable

» computationally expensive, compared to
single tree

Prof. Dr. Andreas Theissler
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Random forests

scikit-learn . e

» In scikit-learn (sklearn) a random forest is available with the class
RandomForestClassifier

» SsSome important parameters:
» n_estimators, determining the number of decision trees to be created

» max_depth, allowing to prune the tree
» max_ features, number of features to consider at each split

» current defaults are: n_estimators=100, criterion='gini‘', max_depth=None
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Random forests
scikit-learn

Random forest

1 from sklearn.ensemble import RandomForestClassifier

2

3 data, labels = createData XOR()

4

5 # split data set into train and test set

6 train_data, test_data, train_labels, test_labels = train_test split(

7 data, labels, test_size = 0.5, random_state=123)
8 # training

9 model = RandomForestClassifier()

10

11 model.fit(train_data, train_labels)

12

13  print(model)

14

15 # plot decision function that was Llearned from training set

16 my_plotDecisionFunction(train_data, train_labels, model, title = "random forest")
17

18 # classification of test set

19 predictions = model.predict(test_data)

20 cm = confusion_matrix(test_labels, predictions)
21 print(cm)

random forest

RandomForestClassifier(bootstrap=True, class_weight=None, criterion="'gini’,
max_depth=None, max_features="auto', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=8,
warm_start=False)

feature 2

feature 1
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Gradient boosting machines

» Gradient boosting machines (GBM) refers to a family of methods of ensembles of trees
using boosting

» GBMs are also referred to as gradient tree boosting

» an early boosting algorithm with decision trees is AdaBoost (Adaptive Boosting)

» later generalized and then termed Gradient Boosting Machines (Friedmann, 2000)

» a widely used scalable implementation is XGBoost (Extreme Gradient Boosting)
(Chen and Guestrin, 2016)
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Gradient boosting machines
Boosting

» boosting uses an ensemble of subsequent base classifiers (weak learners)

» the idea of boosting is, that each base classifier k tries to correctly classify those feature
vectors misclassified by base classifier k-1

» this is achieved by random sampling, with increased probability of drawing a previously
misclassified feature vector (weights are iterativelly assigned to feature vectors)

» the final results is a combination of each classifiers’ results, weighted by its accuracy
» early algorithms are AdaBoost and AdaBoost.M1

base classifier

Y
N
random sampling with higher i
data probability to draw \ voter
misclassified data points base classifier e
Q J 2 voting)

N _
base classifier
3

base classifier
n
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Gradient boosting machines
XGBoost (Extreme Gradient Boosting) (Chen and Guestrin, 2016)

The idea: T, feature 1 <4

» Create many sequential decision trees
T, ...Ty, where each new tree T; tries to
minimize the errors of the previous tree T;_;. feature 2 <5 feature 3 < 8

e

/

» Combine the results with weighted voting. o

» XGBoostis an ensemble method

yes
consisting of sequential trees. @

The algorithm:
1. add one tree T; per step

2. the new tree is found such that the error Ty, feature 5 < 7
of the previous tree T;_; is minimized

3. goto 1. until some stopping criterion is e
reached (e.g. number of steps)

4. the classification result is found by using

/

feature 3 <1 feature 1 <0

the results of T; ... T);, weighted by their yes no
accuracies
» l.e. the votes of better trees have higher

weights
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Gradient boosting machines
XGBoost (Extreme Gradient Boosting)

GBMs and in specific XGBoost use a special form of boosting, referred to as gradient boosting

» onetree T; is added in each step
» regression trees are used (i.e. continuous outputs), allowing to sum up the subsequent outputs
» the new tree T; is selected such that an objective function obj is minimized

» general form of objective function:
obj = loss + regularisation
with:
» loss: some kind of error function expressing the error between predicted values and true values,
i.e. loss(predictions, labels)

e.g. sum of squared errors

» regularisation : a term controlling the model T;, i.e. regularisation(T;), e.g. to avoid overfitting
e.g. model complexity, like number of leaves

» minimizing obj is achieved by the trade-off of minimizing loss, while keeping regularisation minimal

» achieved with a gradient descent approach, referred to as functional gradient descent
» (beyond scope, see e.g. (Friedman,2000) or (Chen and Guestrin, 2016) )
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XGBoost
Evaluation

advantages +

« avoids overfitting

« usually better results compared to single
trees

» works with numerical and categorical data
 can handle missing values
* no scaling of input data required

» works for large, high-dimensional data sets,
since at each split only a subset is tested

* can return feature importance

disadvantages -

* in contrast to single decision trees, a
random forest is not (easily) interpetable

« computationally expensive compared to
single trees, however XGBoost was
implemented towards efficiency and
scalablitity

Prof. Dr. Andreas Theissler
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XGBoost
Python module xgboost

»

»

XGBoost is not contained scikit-learn (sklearn), module xgboost required
however it can be combined with scikit-learn

some important parameters:

»

»

»

n_estimators, determining the number of decision trees to be created

max_depth, allowing to prune the tree

reg lamda, regularisation parameter controlling the trade-off between loss and reg. term
learning rate, also referred to as \eta. controls the contribution of each new tree (0,1)
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https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier

XGBoost

Python module xgboost + scikit-learn
XGBoost . ewm

1 # requires additional package xgboost,

2  #currently (e2/2e2e) to be installed with: pip3 install xgboost

3  from xgboost import XGBClassifier

4

5 # own data set, not included in scikit-Llearn

6 data, labels = createData_XOR()

.

8 # split data set into train and test set

S train_data, test_data, train_labels, test_labels = train_test_split(

10 data, labels, test_size = ©.5, random_state=123)

11  # training

12 model = XGBClassifier()

13 model.fit(train_data, train_labels)

14 print(model)

15

16 # plot decision function that was Llearned from training set (own function!)

17 my_plotDecisionFunction(train_data, train_labels, model, title = "XGBoost™)

18 XGBoost

19 # classification of test set 12 4

26  predictions = model.predict(test_data)

21 em = confusion_matrix(test_labels, predictions) 10 1 ®

22  print(cm) 8 J’Q L S0

£
XGBClassifier(base_score=e.5, booster='gbtree', colsample_bylevel=1, o .0 [ TI .ﬁa&.
colsample_bynode=1, colsample_bytree=1l, gamma=0, learning_rate=0.1, g 4 * *
max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, ® ° . et 0 o
n_estimators=180, n_jobs=1, nthread=None, = 29 ‘0(;0 .‘ ]
objective='binary:logistic', random_state=e, reg_alpha=e, 0- L .’.,‘* :: .:.O‘. J‘
reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, © ® °
subsample=1, verbosity=1) -2 1 e
-4 1
2 0 2 4 5 8 10

feature 1
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Support vector machines (SVM)
Introduction

Notation

x;. one dimension in the feature w: vector of weights
space, i.e. one feature

|IW||: norm of the vector w
x;. one feature vector (one instance)

w;: class i
x: the feature space
y;. label (+1 or -1)

x; x;- inner product, dot product, scalar
product of x; and x;

N: number of instances

n: number of features

We use arrows to denote vectors, in contrast to most of the literature on
data mining, where vectors are written without arrows.
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Support vector machines (SVM)
Introduction

Separating two classes with linear decision functions

N .
D, D5 The number of possible
decision functions is
+ infinite.
+ + ~+ + N
5 + D,  So which one should be
+ class w, +F chosen?
+ + T
+  +
Intuitively D, seems to be
- the best, but why?
class w,
Z S
7 r
X1
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Support vector machines (SVM)

Introduction

Finding the optimal linear decision function

N

+

+

-

+

+

+ class w1+ +
+

+

+

%

7

e

\

D,

margin of D, :<_

el g S W, N W

D,

class w,

v

X1

Based on the informal
explanation, let us compare
the two candidates D, and D,

Our intuition was correct:
* D, has the maximal
margin, it is much larger

than the margin of D,

» D, is the optimal decision
function
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Support vector machines (SVM)
Introduction

Support vector machines for linear separable data

the idea:
separate the instances of two classes using a linear decision function referred to as
“hyperplane”

how it works:  (informal explanation for a two-dimensional space)

1. find two parallel lines, one intersecting one or more instances at the boundary of
class w, and the other line intersecting one or more instances of class w,

2. find the line, with equal distance to each of the two parallel lines
(the line ,in the middle®)

3. measure the distance between the two outer lines
» this distance is referred to as the ,margin”
» the optimal decision function is the one with the maximum margin

4. the decision function is expressed using instances from the training set,
the so-called support vectors
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Support vector machines (SVM)
Expressing the decision function

Expressing the decision function in two-dimensional space

A linear function in a two-dimensional space can be expressed by the well-known ,slope-
intercept-form®:

y=mx+b>b

The y(x)-form is constrained to two dimensions. To make the formula more generic we use
the dimensions x; and x, and w, instead of m:

xz = W1x1 + b
which can be reformulated as

W1X1 +W2X2 +b =0

P - — W1 > X1
Substituting the scalars with the vectors w = (WZ) and x = (xz)

leads to the general form of the linear decision function:

wx+b=0

Prof. Dr. Andreas Theissler



Support vector machines (SVM)
Expressing the decision function

Expressing the decision function using vectors

Up to now we have looked at a two-dimensional space (2 features),
where the linear decision function is simply a line.

In a three-dimensional space (3 features) the line becomes a plane
and in higher-dimensional spaces (>3) it is referred to as a ,,hyperplane®.

We will use the term hyperplane, independent of the number of dimensions.
The hyperplane is expressed as
wxX+b=0

or wWi1Xq + W3 X» + ... + WnXn +b=0

W1 X1
with w = ( ) and x = ()
W, X,

where n is the number of features. (For all data points X becomes a matrix)
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Support vector machines (SVM)
Expressing the decision function

Using the decision function to classify instances
Instead of class labels w; and w,we will use +1/-1 to label the classes:

yi=+41 if xjisw; and y,=-1 if X/isw,

Classification of a feature vector X; is done using the sign-function:

D(x;) = sign(Wix; +b)

le.:
D(x)=+1 if wx;+b>0
D(x)=-1 if wxj+b<0

Please note: w # w (w refers to the classes and w to the so-called weights, in accordance
with the common notation used in literature)

Prof. Dr. Andreas Theissler



Support vector machines (SVM)
Finding the optimal decision function

Having done some math... the optimization problem is given by
minimize %Hv_v’llz (a)

subject to yiwx;+b)=>1 foralli (b)

Using the ,method of Lagrange®, we can incorporate (b) into (a).
Deriving the new equation and setting it to O yields the following optimization problem:

maximize L (&) = Y, a; — le:l a;a;y;yj Xi X;
subjectto YN, a;y; =0
a; =0 foralli

where a; and q; are the so-called Lagrance multipliers.
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Support vector machines (SVM)
Finding the optimal decision function

linear hard-margin SVM

feature 2
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Support vector machines (SVM)
Finding the optimal decision function

Summary: SVM for linearly separable classes

SVM finds the optimal linear decision function:
the ,maximum margin hyperplane”

the found hyperplane is guaranteed to be the optimal solution, there are no local
minima

the decision function is expressed using instances x; from the
training set

» the so-called ,support vectors*

- this type of SVM is called ,hard-margin SVM*“ and can be used if the classes
are linearly separable
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Support vector machines (SVM)
Soft-margin SVM

What if the data is not fully linearly separable?

A Rl p. A hard-margin SVM cannot find
3 a decision function if the classes
. are not linearly separable.

v Solution:
4 « allow some instances to be
. class w, on the opposite side of the
+ supporting hyperplanes
+

» penalize those instances by
introducing so-called slack

variables &;:
class w, « & > 0ifthe instance X;
o is not within the
| boundary

« &, = 0 otherwise

\
\ 4

This type of SVM is called ,,soft-
. X1 margin SVM*
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Support vector machines (SVM)
Soft-margin SVM

Optimization problem for the soft-margin SVM

minimize %||v_v’||2 +CYN &
subject to yiwx;+b)=1-¢&; foralli

where C is a regularization parameter controlling how many and how far instances
may lie outside of the supporting hyperplanes.

C is a hyperparameter, regularizing the influence of the slack variables

Again, using the method of Lagrange, the optimization problem can be
reformulated.
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Support vector machines (SVM)
Soft-margin SVM

linear soft-margin SWM

feature 2
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Support vector machines (SVM)
Non-linear decision functions

The soft-margin SVM works fine, if individual instances prevent the SVM from
finding a linear decision function.

If the entire data set is not linearly separable, there is a better solution:

A data set that is not linearly separable in the given

feature space
RN

can be linearly separated in a higher-dimensional space

RM

RN — RM where M > N
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Support vector machines (SVM)
Non-linear decision functions

Example: the XOR-problem

N
+
+
X +j+
RZ N R3

+

+

+++ class w,
Xy i + class w,

If we

1. add a third dimension x;and

v

2. ,somehow"” shift the instances of class w, on that dimension

> we can linearly separate the two classes in the new feature space R3
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Support vector machines (SVM)
Non-linear decision functions

Mapping to higher-dimensional space using a mapping function

Let us consider a mapping Using the mapping
function
Z = ¢(x) Zy = xq°
Z, = V2xX
which maps R? — R3 2 . 21 2
Zgz = X3
s the classes can be linearly separated.
o %* o c;cb

10

[o]
T o 2 T
— Q0'oQ 'é%'?:
' o (]
ot

@,
Clegl? 'd' '
A !

Z3

-5

> &
o | =] *
| 2 0o #*

-10

X4
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Support vector machines (SVM)
Non-linear decision functions

For the mapping, we need to map each instance x; to an instance z; in the new
feature space using z; = ¢(x;).

Incorporating ¢ () into the optimization problem yields

N N

1
L(a) = Z a; — 5 a;a;y;yj ¢(7i)¢(x7)

=1 [,j=1

Problem:

Obviously we cannot just use any mapping function. In the two previous examples,
the mapping functions were ideal for the data set. They nicely separated the two
classes.

If we need to find specific mapping functions for each data set, the approach would
be infeasible.
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Support vector machines (SVM)
Non-linear decision functions

The kernel trick

Looking at the optimzation problem, we notice that x; and x; are represented by
the inner product as ¢ (x;) $(x;)

Now we use the so-called ,,kernel trick“:

Instead of actually doing the mapping using ¢ (), we replace the inner product by

K(%.%) = $GD (%)
which leads to the following in the Lagrance-transformed optimization problem:
—> 1 —_— —>
L(@)= XYl a — 52%:1 a;a;y;y; K (3, %)

Now we use a kernel function K(x;, x;) that returns a value for each pair of x;
and x; has a parameter that can be tuned during training.
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Support vector machines (SVM)
Non-linear decision functions

Kernel functions

Two widely used kernel functions are
polynomial kernel:
K (%, %) = (i xj +1)°

sometimes with scaling parameter y : K(x;,%;) = (yx; x; + )¢

radial basis function kernel (Gaussian):

— —2
1=l

0x)= e 202 = e VIX-xjl? =L
K(x;,x)=e 2% =e VK™ where y = —

For non-linear problems one typically starts with the radial basis function (RBF) kernel.

the kernel parameter is a hyperparameter
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Support vector machines (SVM)
Non-linear decision functions

# split into training and test set
train data, test data, train labels, test labels = train test split(

data, labels, test size = 0.5, random state=123)

# z-score scaling: determine scaling parameters

scaler = StandardScaler () .fit(train data)

# scale train set and test set
train data = scaler.transform(train data)

test data = scaler.transform(test data)

soft-margin SWM with RBF-kernel

# soft-margin SVM with RBF kernel

# gamma="auto": SVC tries to set a good value 2 .
model = SVC(kernel = "rbf", gamma = "auto", C = 1) L 0.®
o®,
1
“UFAL.

# train model on training set E 0 . ®

2
model.fit (train data, train labels) D

-

# classification of test set

predictions = model.predict (test data)

Prof. Dr. Andreas Theissler 71



Support vector machines (SVM)
Non-linear decision functions

Training and test of soft-margin SVMs with kernels

Usually soft-margin SVMs with non-linear kernels like the RBF kernel are
used.

During training the parameter C and the kernel parameter (o for the RBF
kernel) are tuned so that the training data is separated with a low error
rate.

Looking at classification results in the original feature space, it can be
seen that this type of SVM finds non-linear decision functions.
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Support vector machines (SVM)

Support vector machines

advantages + disadvantages -

 robustness: robust against noise in * in the standard case works only for
the training set if soft-margin SVMs numeric data
are used (data transformation or specific
« highly-flexible decision boundary is kernels required)
kernel trick is used * interpretability: poor interpretability, if
« global optimum is found (for a given the data is mapped to higher-
set of hyperparameters) dimensional space
* no random parts involved, in contrast
to ANNs
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Artificial neural networks
Fundamentals: Perceptron

Perceptron — a simple artificial neural network: overview

» one trivial artificial neural network consists of one node (,neuron®) with multiple
inputs and one output

» proposed by Rosenblatt in 1957 (see e.g. (Geron, 18) chapter 10)

e N v
X3

» can be used for linear classification of two classes (,binary classification®)

» data is passed to the input, one dimension/attribute per input
» e.g. input could be height, width, colour value of apples and pears

» the output is the classification result
» e.g. output could be: ,it's an apple® or ,it's a pear”
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Artificial neural networks
Fundamentals

Simple activation function: heavyside function

0 lf X < O heavyside
’f(x)z{ufxzo =]
o 1 s~
c)(\o\l“a(yd\J
» R-[0,1] g oot 56‘05\@ 5500
Tz 5\(\0\1‘10 2"\0(\?)\ (©
N °

» If the sum of of the network’s weighted inputs is >0, the output is 1
» otherwise the output is O
» an output of 0 or 1 allows to classify data into two classes based on inputs
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Classification
Fundamentals

In a nutshell: Perceptron — a simple artificial neural networks:

» can be used for linear classification of two classes (,binary classification®)
data is passed to the input, one dimension/attribute per input

output is the classification result

v Vv

X
1 wy
X2 Wy () output R
7 7
X3 W3

the inputs of each node x; are weighted with w; and summed up:

n
z Wl xl heavyside
=1 1 e —

1.0

0.8

the sum is passed as to a so-called activation function f()
(e.g. heavyside) and f(x) is the node's output

n
output; = (z w; X;i)
i=1

0.6

output
0.4

0.2

0.0
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Artificial neural networks
Fundamentals

Exercise: Calculations with perceptron

Calculate the neural networks output for the following inputs:
» input:
data point 1: (2, 1, 4)
data point 2: (1, 2, 1)

» output:
O for class 0O (e.g. apple)
1 for class 1 (e.g. pear)

» weights: (0.5,1.5,-1.0)

» activation function: heavyside
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Artificial neural networks
Fundamentals

The bias term

v

= in most networks a so-called bias is added to each node
= the bias functions like an offset, it allows to change the output independently of the node’s inputs
= geometrically it is the intercept of a plane described by w; * x; + w, * x, ...

The formula of the weighted sum changes to
n
W1 * Xq + Wy * Xy + W3 * X3+bk = bk+2Wl'xl'

i=1

The output is now given by

n
output = (bk+zwi X;)
i=1
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Classification
Fundamentals

Vector form with bias term incorporated into vectors

\

Sometime in literature the bias term b, is incorporated into the vector of weights as
w, and the vector x is enhanced by x, = 1.

This allows for a more compact formulation:
output = [(wx)

W2
W3

w X
= where w is the vector <w2) and x is the vector <x2)
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Artificial neural networks
Perceptron for multiple classes

Perceptron for more than two classes:

= one node can be used to separate two classes
= for more than two classes: one output node per class is used

bl
b,
b3
I
example: appie example:
f,i=7cm;f,=6cm X outut for apple = 1,0,0
pear output for pear pear =0,1,0
X2
banana

» one output node corresponds to one class, decision is taken by selecting the maximum
output value

» the ANN is now a linear classifier for multiple classes
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Artificial neural networks
Activation functions

Activation functions

0ifx<O
1ifx=0

The heavyside activation function f(x) = {
was used in early networks.

However, only linear classifiers can be built based on that function.

A variety of activation functions have been proposed and used since. Some of them

are:
» linear
» logistic (a sigmoid function)
» tangens hyperbolicus tanh (a sigmoid function)
» rectifier (the unit is then called called ReLU = rectified linear unit)

» Different activation functions can be used in layers of the network
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Artificial neural networks
Activation functions

Activation functions: linear

linear

linear

» R-oR; f(x) =x

autput
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Artificial neural networks
Activation functions

Activation functions: sigmoid functions

sigmoid functions are S-shaped
they are differantiable

output

» logistic:
» R-(01); fx) =

1
1+e~%

» tanh:

eX—_g—X

eX+e X

» R- (—1,+1); f(x) = tanh(x) =

output

» sigmoid functions were used many years, and still are use

» they have problems when using many layers
(not covered in this course, yet)

1.0

08

0.6

04

0z

0.0

1.0

0.5
|

0.0

v

logistic

-1.0
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Artificial neural networks
Activation functions

Activation functions: sigmoid functions

» as can be seen, sigmoid functions
fulfill a non-linear mapping of inputs
to outputs

» the decision function with n parallel
nodes is, however, still linear!

1.0

output

00 02 04 06 08

logistic
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Artificial neural networks
Multilayer perceptron (MLP)

Building an ANN:

several neurons (nodes) in parallel are one layer
several layers are connected sequentially

prediction according to outputs at output layer
(note: a two-class problem can be solved with one or two output nodes)

by connecting the neurons
» a ,network” is set up: the ,artificial neural network®

apple  The output layer outputs the

Input data is passed to the f. results
input layer
pear example:
Example: _ f apple = 0.7
fi=7cm;f,=6cm hanang P€ar = 0.2
banana= 0.1
input layer hidden layer output layer

=> prediction = max output: apple
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Artificial neural networks
Functioning of ANNSs: overview

apple

Input data is passed to the f, The output layer outputs the
input layer results

pear
Example: £ example:
fi=7cm;f,=6cm apple =0.7

banana pear = 0.2

banana= 0.1
input layer hidden layer  output layer => prediction: apple

,Machine learning“ by an ANN:

= adaptation of the weights w;, such that for input data the ANN takes the correct decision,
l.e. output corresponds to class labels
(technique: ,backpropagation®)

= jterative improvement by using many repetitions on the training set
= one run on the entire training set is called an epoch, very many epochs are required

» example:input: (8cm ;7 cm) + ,apple => output: apple =0,2; pear =0,8, banana=0,0

» adaptation of weights w;, such that classification is correct
(goal: apple =1 ; pear = 0; banana = 0)
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Artificial neural networks
Functioning of ANNSs: overview

Typical traditional ANN — the multi-layer perceptron (MLP)

There is an enormous variety of neural networks, the ,,traditional® type that is
typically used is as follows:

» feed-forward multilayer perceptron:
» feed-forward”: the information flow is strictly from left to right
» ,multilayer perceptron®: consists of multiple layers of perceptrons

» activation function: logistic or tanh
» training using backpropagation

> artificial neural networks have recently become highly relevant again in the field
of deep learning, where so-called deep neural networks are used

> in principle these deep neural networks work similar as shown here, but use
some advancements
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Artificial neural networks
Functioning of ANNS: overview

Artificial neural networks (ANNS)

advantages + disadvantages -
 robustness: robust against noise in « scalability: long training period
the training set - interpretability: poor interpretability,
 accuracy: highly flexible decision the result of the training is a
boundaries vector/matrix of weights
 can be used for different tasks » network-structure and learning rate
besides classification, e.g. has to be pre-redefined
forecasting, regression « random parts involved (e.g.

initialization of weights)

 global minimum not guaranteed with
the standard backpropation gradient-
descent
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Artificial neural networks (ANNS)
Backpropagation

» backpropagation is used for parameter tuning, where the parameters are
the weights including the biases

» backpropagation uses gradient descent
(dt. Gradientenabstiegsverfahren)

» the error at the output layer is iteratively reduced

» the weights are randomly initialized and tuned during the training
process

» the weights are changed in a way to reduce the error at the output layer
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Artificial neural networks (ANNS)
Backpropagation

>

>

>

In order to be able to reduce the error, the error needs to be calculated
this is done using an error function also called loss function
one common loss function is the ,mean sum of squared errors” MSE:

m
1 o 2
E = EZ(yi —¥i)
i=1

where y; is a vector with the label of the data point i, y; is the networks output
(prediction) for data point i, and m is the number of data points

y; is a function of the weights

note: there are other loss functions
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Artificial neural networks (ANNS)
Backpropagation

One-hot encoding

» in the loss function, y; is required to be a vector in order to be comparable to the networks
output

» this is achieved by transforming the labels using one-hot encoding
» the class label then corresponds to the desired network output

apple
For this example ANN: fi
pear
f
banana

» the one-hot encoded labels are apple = (6) pear= (2) banana = (

0 0

)

OO

» predictions (outputs) are floating point numbers,

1o (&)

» the goal is an output that is close to the one-hot encoded label,

» e.g. for apple i.e. apple = <

coo
R R0
coo
NN oY

l.e. for an apple close to (%)
0
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Artificial neural networks (ANNS)
Backpropagation

» when the loss function E = 0, the output for all data points corresponds to the
class labels

» E = 0is unlikely to be achieved
» note that correct predictions are possible without E = 0:

Example:
» an ANN shall have an output node for apple, pear and banana

» the output for one data point x;, which is an apple, shall be (8?)
0.1

» decision will be apple

Exercise: What is the error for this data point ?

E; = —y)*

) — <é>)2 = (0.8 — 1)2 +(0.1 — 0)2+(0.1 — 0)%= 0.06
0

= Sum(<

coo
)
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Artificial neural networks (ANNS)
Backpropagation: Gradient descent with simplified example

» backpropagation uses gradient descent

» one output -
» trained® with one data point
» ignoring the activation function (or assuming a linear activation function y=x)

» for a very simplified network:
» one input X1 wy y

» for this simplified example with one data point the loss function

E ==Y (5 — y)?

m

can be rewritten with y; = w;x4:
E = (wix; — ¥1)°

» so the error is a function of the weight, x; and y, are constant
» we want this error to be minimal

Prof. Dr. Andreas Theissler
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Artificial neural networks (ANNS)
Backpropagation: Gradient descent with simplified example

The IOSS fu nCtlon Error function E (loss function)

E = (wix; — )’1)2

IS obivously a quadratic function

» We want to find the error function‘s minimum

» We can use the function’s derivative and find the value of w;, where the
function is O
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Artificial neural networks (ANNS)
Backpropagation: Gradient descent with simplified example

Using the chain rule (dt. Kettenregel)
f) =g(h() = f'(x) = g'(h(x)) * h'(x)

we find the derivative of
E = (wx; — 3’1)2

to be
E'"=2x%(wix; —y1) * x4

» during training we do not know all function values, we only know E for the current
input x; and the current value of weight w,

» starting with a random w; we want to change w; in a way that minimizes E
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Artificial neural networks (ANNS)
Backpropagation: Gradient descent with simplified example

We know the type of error function (quadratic in our example)

So we can calculate E (w;) and use the gradient E'(w,) to find the direction and the extent of
the desired change of w

Error function E (loss function)

25
]

20
]

15

- /gradient of the error
function at starting point

10

» the gradient yields the direction and the extent of the weight update that reduces E
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Artificial neural networks (ANNS)
Backpropagation: Gradient descent with simplified example

Learning rate
To control the extent of the weight update we introduce a learning rate n € (0,1)

The weights are iteratively (step-wise) changed as follows:

W(step t+1) = W(stept) — 11 * E’(W(step t))

» the learning rate regulates the trade-off between convergence speed and the
stability of the process to converge

» the learning rate is a hyperparameter
» for small networks a constant learning rate of 0.1 is commonly used
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Artificial neural networks (ANNS)
Backpropagation: Gradient descent with simplified example

Example: gradient descent steps of gradient descent:

| onopeanpe B - At = 0= o sepow E

» in other words for an input of 1 we want the

network's output to be 1 1 3 4
» (note that w; = 1 is the obvious solution) 2 2.6 2.56
3 2.28 1.63
Starting with a random w; = 3, the error in the first 4 2.02 1.04
step Is: 5 1.82 0.67
E (wy) = (wyx; — y1)° 6 1.65 0.43
=(3*1-1)*=4
Gradient descent, learning rate = 0.1
the gradient for w; = 3 is S
E'(wy) =2« (wixg —y1) * x4
=2+xB3*x1—-1)x1=4 o |
We can calculate the weight of the next step: T
W — 1
2
Wistep t+1) = W(stept) — n* E,(W(step t)) 935543
= I I I I I
W(step t+1) == 3 - 0.1 * 4‘ == 2.6 - 2 0 2 4

Prof. Dr. Andreas Theissler
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Artificial neural networks (ANNS)
Backpropagation: Gradient descent with simplified example

» higher learning rates lead to faster changes

» step might be so large that minimum is over-stepped

» then the next step will change the weight in the opposite direction

» oscillation is possible

» might diverge instead of converge Gradient descent, learning rate = 0.9
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Artificial neural networks (ANNS)
Training with backpropagation

Backpropagation on multiple layers

In the loss function

m
1 o 2
E = EZ(yi —¥i)
i=1

y; is the vector of the output layer, e.qg. (8?)
0.1

» each component of this vector is given by the weighted sum of that node’s inputs
with the activation function applied, i.e. f(wx) = f(Ql- o w; X;)

» this is recursive, i.e. a node‘s output in layer N depends on the node’s inputs,
which depend on the nodes’ outputs of layer N-1, ...

» in addition to the previous simplified example, the derivative of the activation
function is incorporated into the gradient descent steps
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Artificial neural networks (ANNS)
Training with backpropagation

Backpropagation — a ,,quick generalization* to multiple layers

In the loss function

m
1 o 2
E = EZ(yi —¥i)
i=1

y; is the vector of the output layer, e.qg. (8?)
0.1

» each component of this vector is given by the weighted sum of that node’s inputs
with the activation function applied, i.e. f(wx) = f(Ql- o w; X;)

» this is recursive, i.e. a node‘s output in layer N depends on the node’s inputs,
which depend on the nodes’ outputs of layer N-1, ...

» in addition to the previous simplified example, the derivative of the activation
function is incorporated into the gradient descent steps
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Artificial neural networks (ANNS)
Some common loss functions for classification

Mean Squared Error(MSE):

| o 2 Iy

—

where 7 is the index of the data points 1...n and j is the index of the classes 1...|C]|.

Binary Cross-Entropy (BCE) - for two classes:

BCET) =~ ) [yslog(5i) + (1 - yi) log(1 - §2)]
i=1

Categorical Cross-Entropy (CCE):

n |C|

CCE(W) = ZZm 2(3i.)

fl;

where y; ; denotes the vector component j of class label y; and y;_; the prediction
indexed by i at node ;.
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Artificial neural networks (ANNS)
Training with backpropagation

The weights of all nodes need to be tuned in order to reduce the error

Each iteration of backpropagation has the following two steps:

1. forward propagation: the data is passed to the input layer and the error is calculated at the
output layer for all passed data points

2. using gradient descent, the weights of all nodes in all layers are changed using gradient
descent

forward propagation

apple
fr
pear
£
banana

backward propagation

» one iteration with all data points is called an epoch
» this process is repeated many times, typically thousands of iterations
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Artificial neural networks (ANNS)
Training with backpropagation

An ANN has a high number of weights

» so the function to be optimized is not as simple as shown in the example for one weight by
the quadratic function

» itis a function of very many variables

The process, however, is the same:

» the function’s gradient is calculated in order to determine the direction and extent the of the
weight update

» instead of the derivative, the partial derivatives are used

One can imagine that process for two variables as a skate bowl, where we roll a ball and we
want it to stop at the minimum: - | p —

of a skateboarding recreational facility.
Bachelor Thesis, Teodor Daskalov

CONCRETESKATEPARKS
Design and construction

image:
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Artificial neural networks (ANNS)

# split into training and test set
train data, test data, train labels, test labels = train test split(

data, labels, test size = 0.5, random state=123)
Artificial Neural Network

# z-score scaling: determine scaling parameters

scaler = StandardScaler () .fit(train data)

# scale train set and test set
train data = scaler.transform(train data)

test data = scaler.transform(test data)

# create neural network

model = MLPClassifier (hidden layer sizes=(20,20,),
activation='relu', solver='adam',K max iter=1000,

learning rate init=0.001, momentum=0.9)

# train model on training set

model.fit(train data, train labels)

# classification of test set

predictions = model.predict (test data)
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Artificial neural networks (ANNS)
Deep Learning

Deep Learning — an overview

Deep Learning uses ANNs as we have seen them so far, with some
advancements

» more layers

» other activation functions

» advanced training methods

» additional methods to avoid overfitting

» Deep Learning needs a lot of training data and requires long training

» the basic ideais not to do feature engineering, but let the Deep
ANN determine the features it requires to separate the data points
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Artificial neural networks (ANNS)
Deep Learning

Deep Learning — an overview

In addition: Deep Learning uses network architectures for specific data
types, e.g.

» CNNs for images

» RNNSs for time series or text

In general: The distinction between ,Deep Learning” and ANNs without
Deep Learning is not too strict. Many ideas have been around before the
term Deep Learning was introduced.
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Artificial neural networks (ANNS)
Avoiding overfitting

In order to monitor the process during training, the ANNSs error in the current step is
calculated not only on the training set, but on a so-called validation set

this is an approach to try to detect overfitting

this validation set is split from the initial training set

during a step multiple validation sets can be extracted using “cross-validation®

- Recommendation: a ,blind test set” should still be kept,
l.e. validation set is not the same as the test set rainin
= the blind test set can be used as a final quality gate d
after the training process
validation
test
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Artificial neural networks (ANNS)
Avoiding overfitting: early stopping

Early stopping
» observation: - error on training set (train error, train loss) decreases

- error on validation set (test error, test loss) decreases up to some point
after that point, the error on the test set increases => overfitting

overfitting

—t—

error
validation set

error

error
training set

n
»

iteration

» idea: stop training when overfitting starts (,early stopping®)

» stop training when error on validation set (validation error, validation loss) increases

» since the errors are not as stable as shown here, the errors are monitored during training and
training is stopped after a ,stable” increase of the validation error

Prof. Dr. Andreas Theissler 109



Avoiding overfitting
Ensemble

,Ensemble“ — combining several models

» observation:  each model has different strenghts and weaknesses,
l.e. each model may overfit differently

» idea: combining many different models (,ensemble)

» Some options:
= ANNSs with different architectures (number of layers, number of nodes, etc.)

= same ANN architecture trained on different subsets of the data, hence the weights w; will
be different

ANN 1
data ANN 2 Final result: majority voting
ANN n Example:
ANN 1: ,apple®
ANN 2: pear” ]» = ,apple”
ANN 3: ,apple”
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Avoiding overfitting
Dropout

Dropout

» observation: theidea of an ,ensemble” ist good,
but is computationally expensive and requires a lot of training data

» idea: use different representations of the same ANN

» Functioning:

= for each data point (,feature vector®), randomly deactivate nodes and their connections
= deactive nodes with some probability, e.g. p=20% in input layer, p=50% in hidden layer
= when using the network to predict data, all nodes are active

(O active node
(»: inactive node
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Avoiding overfitting

There are more techniques to avoid overfitting, e.g. L1-regularization, L2-
regularization

Recommendation:
» early stopping: is typically used
» ensemble: depends on the availability of data and computational power
» dropout: is typically used, particularly when for ANNs with many layers

» A combination of multiple techniques is often used, e.g. early stopping
and dropout
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Activation functions for Deep ANNs

commonly used activation functions: instead of logistic function Deep ANNSs use rectifier
functions (and variants of it)

4

»

» rectifier:

the activation function is called rectifier, the unit is then called called ReLU (rectified linear unit)

R - [0,00]; f(x) = max(0,x)

(these terms are often used as equivalents also they are not)

1.0

08

oo 02 04 06

logistic rectifier
Loy
-
o
=21
(o]
=
| | | | | | | | | |
-4 -2 0 2 4 -4 -2 0 2 4
x x
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Activation functions for Deep ANNs

Softmax function

For classification problems, the output layer typically uses the softmax activation function

= This function scales the values such that the sum of all output nodes is 1
= The output of one node can then be interpreted as a probability

Example: output might be at the nodes:
» apple: 0.7, pear: 0.2, banana: 0.1
» so the ANN predicts that the data point is an apple with a probability of 0.7

apple
fi
pear
f
banana
input layer hidden layer output layer
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Training Artificial neural networks (ANNS)
Using mini-batches

» Deep Learning requires a large training set

» Epoch learning, i.e. adapring the weights after having seen all data points,
would not converge, since it would take very long

» Mini-batch updating is used

mini-batch updating (=stochastic gradient descent (SGD) with batch size > 1):
» a small number of random samples (e.g. 50) are taken from the training set

» the mean error is calculated (summing up the errors and dividing by the number
of data points)

» the weights are updated
» faster update of weights, but updates depend only on a small subset of the data
» common approach for Deep Learning
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Training Artificial neural networks (ANNS)
Enhancement: momentun optimization

Momentum optimization

For smaller batch sizes (mini-batch updating or case updating), the change of
weights might be instable

A momentum term can be introduced, that incorporates the previous weight update
into the current weight update

l.e. if the weights were rapidly updated in positive direction and the current batch
indicates an update in negative direction, this change of direction is smoothed

Wistep t+1) = W(stept) — ( Bm+ nE,(W(step t)) )

» where m is a vector with the previous gradients

» and f is a hyperparameter between 0 and 1 (0 = no momentum, 1 = maximal
momentum). A common value for £ is 0.9.
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Training Artificial neural networks (ANNS)
Enhancement: Learning rate decay / adaptive learning

Learning rate decay / adaptive learning rate

» The learning rate n can be gradually decreased during the training process

» This allows to take large steps at the beginning and finer steps towards the end
of the training process

» enhanced versions of backpropagation that use an adaptive learning rate are
AdaGrad and RMSProp

Learning rate decay / adaptive learning rate + momentum optimization

» momentum optimization and adaptive learning rate is combined in ADAM
(Adaptive momentum estimation)
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Artificial neural networks (ANNS)
Programming with tensorflow / keras

[...]
# train test split

train data, test data, train labels raw, test labels raw = train_ test split(

data, labels raw, test size = 0.5)
scaler = StandardScaler().fit(train data) +# z-score
train data = scaler.transform(train data)
test data = scaler.transform(test data)

# one-hot-encoding of the labels is required for neural networks
# 1.e. instead of labels 1,2,3 => vectors (1 0 0), (0O 1 0), (0 0 1)
def encodeLabelsOneHot (in labels) :

labels onehot = to categorical (in_ labels)

return labels onehot

train labels = encodeLabelsOneHot (train labels raw) # call own function

test labels = encodelabelsOneHot (test labels raw) # call own function

fextract number of features and classes
n attributes = data.shape([1l]

n classes = train labels.shape[1]
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Artificial neural networks (ANNS)
Programming with tensorflow / keras

#create neural network, see API reference e.g.: https://keras.io/

model = Sequential/()

#input layer is created implictly, based on input dim
model .add (Dense (units=20, activation='tanh', input dim=n_attributes)) #hidden layer
model. add (Dense (units=10, activation='tanh')) #hidden layer

model.add (Dense (units=n_classes, activation='softmax')) #output layer

optim = Adam()

model.compile (loss="mean squared error',6 optimizer=optim, metrics=['accuracy'])

# train the model

model.fit (train data, train labels, batch size=20, epochs=100)

# classification of test set

pred = model.predict(test data)

# get from network outputs to classes
predictions = np.argmax (model.predict (test data), axis=-1)

cm = confusion matrix(test labels raw, predictions)
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Experimenting with ANNSs

[ Experimental environments ]

« https://playground.tensorflow.org
* https://js.tensorflow.org/

[ Cloud-based services ]

* Pre-installed environments available
« easy to use GPUs or TPUs
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Classfication: test

Possible answers:

0.30
I

» Does the selected feature space allow us to get good
results? E

= b p(fleo) p(flo;)

a

From the plot above it becomes obvious that any classifier
will ouput weak results using this one feature.

020
I

0.10

0.00
1

 Did we scale the features? ] f

If not, the features are weighted differently.

« Have we used instances from the training set to
determine the classifier's accuracy?

training set

)% @

test set

In that case we get very good results after training, and
possibly very weak results on unseen data.
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Case Study

Classification of fault types in electromagnetic drive systems

» multi-class problem: 11 fault types, i.e. 11 classes
» 48 features
» approx. 50.000 feature vectors

accuracy of different classifiers
on unscaled and scaled input data

1.0 0.99 0.98 0.99 099 0.99
: 0.95
001 993 0.92

0.85

o
[

0.76

0.73

e
o

0.5

o
i

0.19

e
N}

Accuracy (5-fold cross-validation)

0.11

0.0

MLP SVM KNN (k=5) Logistic regression xghoost

771 Raw data (d}) 1 Min-max scaled d; [ Standard scaled d;

Runtime for 125 training iterations (minutes)

120m

100m

80m

60m

40m

20m

runtime of XGBoost

with a growing number of

used features

43.2

28.2 29.4

46.2

113.3

PCAO5 RFE10  PCA 99

Griner, T., Bollhoff, F., Meisetschlager, R., Vydrenko, A., Bator, M., Dicks, A., & Theissler, A. (2020).
Evaluation of Machine Learning for Sensorless Detection and Classification of Faults in Electromechanical Drive Systems.

Proceedings 24th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Procedia
Computer Science, Volume 176, pages 1586-1595, 2020, Elsevier. ISSN 1877-0509

RFE 10

Raw'data
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https://doi.org/10.1016/j.procs.2020.09.170

Case Study

Classification of fault types in electromagnetic drive systems

decision trees can get messy...
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Case Study
Classification of fault types in electromagnetic drive systems

XGBoost
classification with a subset of features

>
>

features are selected based on feature importance by XGBoost

1.0

Accuracy on d; (5-fold validation)

0.6 1

XGBoost:
using feature importance to select subset of features

0.9

0.8 1

0 5 10 15 20 25 30 35 40 45

Number of selected features
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Further readings

Machine Learning + Deep Learning:

» J. Han, M. Kamber, J. Pei (2011). Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann
Publishers, 3rd Edition. ISBN 978-0123814791

» Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Education
(ISE Editions).

» A. Theissler (2013). Detecting anomalies in multivariate time series from automotive systems. PhD Thesis. Brunel University London
» Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition, Fourth Edition.Academic Press, 4th edition.

» “Deep Learning” (2016).
lan Goodfellow, Yoshua Bengio, Aaron Courville. kostenfrei online: www.deeplearningbook.org

» J. Han, M. Kamber, J. Pei. Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann
Publishers

» Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Education

» Theodoridis, S. and Koutroumbas, K. (2009). Pattern Recognition, Fourth Edition. Academic Press

» Breimann (2001). Random Forests

» Friedman, J.H. (2000), Greedy Function Approximation: A Gradient Boosting Machine.
Annals of Statistics, year = 2000, volume = {29}, pages = {1189--1232}

» Chen, Tiangi and Guestrin, Carlos (2016), XGBoost: A Scalable Tree Boosting System.
Proceedings of the 22nd ACM SIGKDD 2016

Papers on Overfitting:

» ,Dropout: A Simple Way to Prevent Neural Networks from Overfitting® (2014)

» Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, llya and Salakhutdinov, Ruslan
» Journal Machine Learning Research. Jan. 2014, Vol. 15, Number 1, pages 1929-1958

» -Ensemble based systems in decision making“ (2006)
Robert Polikar, IEEE Circuits and Systems Magazine. 2006, Vol. 6, Issue 3, pages 21-45
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