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ABSTRACT
The labeling of datasets is an important task for supervised and
semi-supervised machine learning that can be addressed with vi-
sual analytics. With model-based active learning and user-based
interactive labeling, there are two complementary strategies for this
task. We present an approach that combines the strengths of both
areas and aims to guide users through model-based recommenda-
tions and highlighting in one interface when selecting and labeling
instances. For this purpose, an active learning strategy is used to
recommend useful instances in addition to the user-based selection
of instances. We have implemented the approach and conducted a
user survey to research the effects guidance by visual cues has on
the users’ selection strategies. The proposed approach combines
both perspectives in a single interactive visualization to support the
user with different degrees of guidance in the selection of instances.
Our results of the user survey suggest that user guidance has a
positive influence on the users’ perceived confidence and difficulty
in selecting instances, on their orientation, and on their perceived
impression of the models’ performance. A video of the approach is
available: https://youtu.be/TYPWG85Akn0.
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• Human-centered computing → Visualization systems and
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1 INTRODUCTION
The machine and deep learning approaches, which are currently
perceived as successful [1, 30, 32], are in most cases based on su-
pervised learning. To train such models, large amounts of labeled
data are required. While the acquisition of the data in today’s in-
formation age through connected sensors and Big Data is often
not a problem, the provision of the corresponding labels is a ma-
jor challenge. This often prevents the application of ML in those
productive environments where labels are not available. To label
the data, experts’ knowledge is needed. The labeling process is
therefore associated with a considerable amount of time and cost,
as the experts have to carefully examine each instance.

Active learning (AL) [24] is one approach to reduce the number
of instances to be labeled by users. Using various query strategies,
the model queries the user for labels of instances that are infor-
mative for the model. While in AL, users are constrained to label
suggested instances, a complementary approach is to use interac-
tive visualizations. In those approaches, data points can be freely
labeled by the user leveraging methods of Visual Analytics. Bernard
et al. [3] compared AL and user strategies and derived 10 strategies,
which users followed to select instances for labeling. In [3], the au-
thors showed that pure user-driven selection of instances can lead
to a biased and sub-optimal selection. With visual-interactive label-
ing (VIAL) Bernard et al. [5] proposed an approach combining the
complementary strengths of user-based selection and model-based
suggestions to label the best possible candidates.

Our work bases on the aforementioned research, in particular
on [5]. We focus on answering the two research questions:

• RQ1: How can users be guided in the selection of instances
to be labeled to point them towards informative instances?

• RQ2: How does guiding users in the selection process affect
their selection and labeling strategy?

We present an approach that calculates the utility of each instance
for training a classifier and presents it together with recommenda-
tions of particularly useful instances in an interactive user interface.
The user is thereby guided by the model by the means of visual
cues, however, for the selection of instances and labeling the users
can freely decide where to follow the guidance and where to make
their own decisions. Iteratively, a machine learning (ML) model is
trained on the subset of user-labeled data points and enhances the
labels by classifying the unlabeled data points (label propagation).
The user may decide to refine the labeling or to confirm the manual
labels together with the label propagation conducted by the ML
model.

https://youtu.be/TYPWG85Akn0
https://doi.org/10.1145/3430036.3430058
https://doi.org/10.1145/3430036.3430058
https://doi.org/10.1145/3430036.3430058
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This work makes the following contributions:

(1) Adaptation of a model- and data-based active learning strat-
egy to calculate the utility of unlabeled instances for training
a classifier and to recommend instances to the user.

(2) Concept and design for guiding users in the selection of
instances for the training process of a classifier through
visual cues in a visual-interactive interface.

(3) Comparative analysis of the influence of user guidance on
the users’ selection of instances with a user survey.

2 RELATEDWORK
Related work originates from different research areas dealing with
interactive labeling of instances: active learning, interactive visual-
ization, and the combination of both. Furthermore, there is related
work focusing on user guidance.

In active learning (AL) [24, 25, 28] an iterative training process
is used. The active learner queries a human oracle for labels of
informative data points. Informative instances are those that will
most likely improve the model’s accuracy. By selecting the most
effective instances for training, the aim is to minimize the number
of user interactions. Strategies for the selection of instances can
be grouped into different categories depending on the metrics and
sources [3, 4, 13, 31]. In general, these strategies can either use
information from the model or the data. Recently, approaches were
presented that combine model and data-based strategies to avoid
redundancies and outliers in the selection process [13] by consider-
ing correlations between features or labels. He et al. [14] introduced
an approach that not only takes uncertainty and representativeness
into account but also the diversity of the data. While AL approaches
may produce good models in a fast manner, according to [8] users
often feel frustrated having to answer long sequences of queries.

While in AL the model controls the workflow, visualization meth-
ods can be used to let the user freely select and label potentially
informative instances. Visual Analytics enhances the cognitive abil-
ities of humans by methodically preparing and presenting data in
interfaces with interactive visualization [12]. Thereby, people can
gain deeper insights into heterogeneous and complex data through
explorative knowledge discovery [12]. Like the querying strategies
in AL, users also follow certain strategies when selecting interesting
instances. Bernard et al. [3] compared AL and user strategies in a
study. Based on the observations of the subjects, 10 strategies were
identified, which users followed to select instances for labeling. In
subsequent work [4], formal building blocks were derived from
these strategies, systematically describing recurring thinking pat-
terns and concepts. The resulting user strategies can be categorized
into data and model-based strategies based on the information used.
In the data-based approaches, only information from the data set,
the instances, and their projections are used for the decision. For the
model-based strategies – in addition to the data-based information
– the class labels predicted by a model are also considered.

It has been experimentally shown [3] that purely user-driven
selection and labeling of instances can lead to a biased and sub-
optimally labeled data set. While leaving the user in control, sup-
portive guidance appears to be beneficial. Ceneda et al. [9] describe
guidance in terms of visual analytics as “[. . . ] a computer-assisted
process that aims to actively resolve a knowledge gap encountered

by users during an interactive visual analytics session”. Guidance
aims at supporting the user in fulfilling a task through a dynamic
process. In their guidance model, Ceneda et al. [9] characterize user
guidance through a knowledge gap, input and output, and guid-
ance degree. Three guidance degrees are distinguished: (1) orienting
which is the lowest degree and supports users to build a mental
map with hints on possible targets or paths towards the solution.
For this purpose, visual cues in visualizations are often used. (2)
directing which emphasizes a possible course towards a solution.
Alternative options that lead to the desired result are offered. Users
can accept or ignore these suggestions. (3) prescribing which is the
highest degree of guidance. Decisions on the next steps are made
in an automated process leading towards the desired result.

Bernard et al. [5] proposed visual interactive labeling (VIAL), a
unified process for the interactive labeling of instances with the
user in the loop. VIAL aims to combine the mutual strengths of AL
and interactive visualizations. In the iterative approach, there are
two complementary alternatives for identifying instances for label-
ing: interactive visualization and candidate suggestion. Whereas
the users are queried by the model with automated suggestions
in the AL perspective, they take a more active role in the interac-
tive visualization perspective by exploring and selecting instances.
The VIAL process proposes to either include AL-based guidance
concepts included in visual interfaces, or visual-interactive inter-
faces for the analysis and steering of AL strategies [5]. Kucher et
al. [17] implemented VIAL for the classification of social media
text using an AL approach for model-based selection of instances.
Users can either label the suggested instance or ignore it. Ritter et al.
[21] introduced a visual-interactive approach for the classification
of music genres. In addition to suggesting instances determined
by an AL strategy, users can select their own instances in a visu-
alization. In [27], Theissler et al. discuss the challenges of visual
interactive labeling for anomaly detection. In [10] mVis is proposed
where interactive visualizations are used for the selection of in-
stances. These visualizations are enhanced with the predicted or
user-assigned labels. To guide the user in the selection, different ML
methods like clustering, classification, and AL are used, which the
user can parameterize. In [2], Beil et al. propose an approach for in-
teractive labeling of instances combining density-based clustering
with anomaly detection. Identified groups of similar instances are
iteratively cleaned from outliers and afterwards labeled as batches.

To the best of our knowledge, no approach has been proposed
that implements VIAL in such a way that both, the user-driven
selection of instances and the model-based suggestions, are unified
in one visualization with visual cues. Such an approach would,
however, be beneficial since users would not have to decide on one
of the two degrees of guidance orienting and prescribing but rather
have the combined spectrum with directing at their disposal.

3 APPROACH: VIAL WITH USER GUIDANCE
We present a hybrid approach that combines user- and model-
based selection for interactive instance labeling (see Fig. 1). Starting
with unlabeled data, users select and label instances. The user is
guided from the very beginning of the process by suggesting use-
ful instances and showing them with visual cues. By calculating
suggestions in the first iteration using the representativeness of
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Figure 1: Overview of the proposed approach based on the
VIAL process [5]. Our iterative approach includes algorith-
mic models (green) and visual interfaces (red). Both of the
two complementary main components, Candidate Sugges-
tion and Result Visualization, consist of individual building
blocks for the calculation and presentation of information.

the unlabeled instances instead of an untrained model solely, we
overcome the cold start problem known from Active Learning. An
interplay between the user and a classifier takes place intending
to collaboratively label the entire data set with a low number of
user interactions. Therefore, the classifier is iteratively trained on
the current set of manually labeled data points to propagate the
labels by tentatively assigning predictions to unlabeled data points.
The approach implements the VIAL process [5] with the two com-
plementary steps Candidate Suggestion, and Result Visualization to
identify candidates to be labeled. The iterative workflow consists
of three steps. In the first step, similar to Norman’s Stages of Ac-
tion [20], the user evaluates the data and the state of the model
by comparing it with his mental model and initial goals. The user
is provided with the calculated utility of each instance and with
recommended instances. Especially at the beginning of the process,
when the user has assigned only a few or no labels and therefore
the model is insufficiently trained, the calculated utility and the
suggestions are essential for the user to identify influential and
interesting instances. Following that, in the second step, the user
assigns the corresponding labels to the selected instances. In the
final step, the labeled instances are added to the training set and
the model is retrained. Simultaneously, the model calculates new
recommendations. This process is iteratively repeated, starting with
the first step displaying the updated model and the new recommen-
dations. The user repeats this procedure until satisfied. Then the
model’s predicted classes are accepted as labels for the remaining
instances that have not been manually labeled.

The approach consists of the two main components Candidate
Suggestion and Result Visualization. While the first is model-based,
the latter is an interactive visualization showing the data, the model
state, and the visual cues to guide the user.

3.1 Candidate Suggestion
The Candidate Suggestion calculates the potential benefit of each
unlabeled instance and, based on this, automatically selects mean-
ingful instances that are suggested to the user. We denote the esti-
mated benefit of an instance as utility, inspired by prior research
[13]. To calculate the utility we use model- and data-based informa-
tion, supported by Fu et al. [13] and He et al. [14] who consider not
only the uncertainty of the model but also the representativeness
of the instance when calculating the utility. The use of representa-
tiveness compensates for the fact that the uncertainty of the model
considers the instances isolated from each other. Thus, potential
outliers that are not representative for the data set might get rec-
ommended. The representativeness prevents this by incorporating
similarities between the data points. We define the utility of an
unlabeled instance 𝑥𝑖 , inspired by [13, 14], as:

Utility(𝑥𝑖 ) B Uncertainty(𝑥𝑖 ) × Representativeness(𝑥𝑖 )𝛽 (1)

where 𝛽 controls the trade-off. For each instance, the weighted
product of the model uncertainty and the similarity to all other
instances in the data set is calculated.

3.1.1 Uncertainty Calculation. We use a probabilistic model for
the calculation of the uncertainty, which represents the predicted
result of a classifier as a vector containing the posterior probability
of the classes learned by the model for each instance. Following
the three user strategies from [4] (class borders refinement, class
outlier labeling, and class intersection minimization), we use the
margin approach to minimize the error rate in classification. There
is criticism that this approach only considers the two most probable
classes and neglects additional information. However, similar to
user strategies [4], our user-based approach seeks to minimize clas-
sification errors by distinguishing clearly between specific classes –
the key feature of the margin approach. The originally proposed
metric [13] is adopted in the following way to obtain the difference
between the posterior probabilities of the two most probable classes
for each unlabeled instance 𝑥𝑖 :

𝑓margin (𝑥𝑖 ) = 𝑃Θ (𝑦1 |𝑥𝑖 ) − 𝑃Θ (𝑦2 |𝑥𝑖 ) (2)

where 𝑦1 and 𝑦2 are the first and second probable class labels. With
the traditional least margin approach, the model tries to separate
the two classes with the highest probability as distinct from each
other as possible, which is indicated by the largest possible margin
between the probabilities. Instances with a small margin are there-
fore particularly informative for the model since in these cases the
model is unsure. The complement of the margin (eq. (2)) is used as
the measure of uncertainty:

Uncertainty(𝑥𝑖 ) B 𝑓uncertainty (𝑥𝑖 ) = 1 − 𝑓𝑚𝑎𝑟𝑔𝑖𝑛 (𝑥𝑖 ) (3)

By this conversion, a small margin expresses a high degree of
uncertainty, since in that case confusion can easily occur between
the first two classes.

To determine the uncertainty, a trained model is necessary. How-
ever, at the beginning of the labeling process, no labeled instances
are available to train a model. Therefore, we initially assign the
highest possible uncertainty of 1 to each instance. Hence, an initial
utility can be calculated, and instances can be recommended.
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3.1.2 Representativeness Calculation. To calculate how representa-
tive an instance 𝑥𝑖 is, our approach uses the information density 𝐼 .
The higher the information density of an instance, the more similar
the instance is to the rest of the data, expressed by:

Representativeness(𝑥𝑖 ) B 𝐼 (𝑥𝑖 ) =
1
𝑈

𝑈∑
𝑢=1

𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑢 ) (4)

where𝑈 denotes the size of the unlabeled dataset. There are several
ways to calculate the similarity. We use the Euclidean similarity, a
reformulation of the Euclidean distance:

𝑠𝑖𝑚eucl (𝑥𝑖 , 𝑥𝑢 ) =
1

1 +
√∑𝑛

𝑗=1 (𝑥𝑖 𝑗 − 𝑥𝑢 𝑗
)2

(5)

Calculating the information density using Euclidean similarity
prefers the centers of clusters. We assume that these clusters corre-
spond to actual classes in the data with the identified centers being
the most representative instances of these classes. Based on the
data-based user strategy ideal labels first [4], which focuses on the
most characteristic instances of a class, these archetypes can then
be generalized and used for the remaining instances of the cluster.

3.1.3 Utility Calculation. Incorporating eq. (3) and eq. (4) into
eq. (1), yields the equation to determine the utility of an unlabeled
instance 𝑥𝑖 :

Utility(𝑥𝑖 ) =
(
1 − 𝑓𝑚𝑎𝑟𝑔𝑖𝑛 (𝑥𝑖 )

)
×

(
1
𝑈

𝑈∑
𝑢=1

𝑠𝑖𝑚eucl (𝑥𝑖 , 𝑥𝑢 )
)𝛽

(6)

3.1.4 Diversity Calculation. Based on the calculated Utility(𝑥𝑖 ),
particularly useful instances for training are determined and sug-
gested to the user. A naive approach would be to suggest the top 𝑛
instances with the highest utility. However, since these can be lo-
cated very close to each other, superfluous instances may be labeled.
To distribute the recommendations meaningfully over the entire
data set, we use kernel k-means clustering [11] as proposed by [14].
However, we do not use all unlabeled instances for clustering, but
rather the subset with a high utility. We choose the instances closest
to each of the 𝑘 calculated cluster centroids. Thus 𝑘 instances are
recommended which are both useful and diverse.

3.1.5 Learning Model. We use a random forest classifier [7] for the
prediction of class labels. An advantage of random forests is that
they directly yield the probability of each class for each instance,
which is necessary for the uncertainty calculation. Besides, the
classifier is fast in training and prediction, which is important for
seamless user interaction and allows the approach to scale well
for higher-dimensional data. The respective results must be made
available to the users as quickly as possible, otherwise, they will
lose interest and attention due to long waiting times. In the imple-
mentation, the standard configuration of the scikit-learn1 package
was used. Each random forest consists of 100 decision trees gen-
erated using Giny impurity and bootstrapping without restricting
the depth of the trees. Besides determining the uncertainty for the
utility calculation, the classifier is used for the automated labeling

1https://scikit-learn.org/stable/

of all unlabeled instances. These labels are tentative, users can con-
firm them manually. During the training process, predicted labels
may change as the classifier is retrained.

3.2 Result Visualization
The second component is focused on conveying the data as well as
information of the model to the user. We use visualization since this
enhances the cognitive abilities of humans by methodically prepar-
ing and presenting data in interfaces with interactive visualization
[12]. Thereby, the user can gain deeper insights into heterogeneous
and complex data through explorative knowledge discovery [12].

3.2.1 Data Visualization. When displaying the instances to be la-
beled, the high dimensionality of most data sets can cause difficul-
ties in the visualization. Although there are forms of representation
such as parallel coordinates [16] or radar-plot [22] which can rep-
resent many dimensions, they can become cluttered when there is
too much data, or they cannot reveal the relationships and clusters
in the data. Hence, projection methods are used to reduce the di-
mensionality and display the data with a 2D scatter plot. Sedlmair
et al. [23] showed that a scatter plot of projected data can clearly
display clusters in the data.

For the projection of the data, our visualization approach uses
t-distributed stochastic neighbor embedding (t-SNE). This algo-
rithm is widely used in ML and visual interactive labeling due to its
“ability to create compelling two-dimensional maps from data with
hundreds or even thousands of dimensions” [29] effectively. The
method is occasionally criticized for creating visualizations that
lead to wrong conclusions, as they distort the data set or present
nonexistent clusters. However, such scenarios can be avoided by
correctly configuring the main hyperparameters [15, 29]. The me-
thodical configuration of these hyperparameters was not part of
this work and remains an open challenge for future work. For our
prototype, we experimentally figured out perplexity = 20,maximum
iterations = 5000, and used the default configuration of the scikit-
learn1 function for the remaining parameters. This visualization
allows users to apply data-based strategies [4] to identify interesting
instances based on the location and relation of the instances.

3.2.2 Model Visualization. To enable users to apply model-based
strategies, the visualization of the data is extended by additional
information from the model. Regarding the recognized model-based
strategies for instance selection, users always fall back on the
model’s predicted labels to evaluate the current state of the model.
Thus, we extend the visualization so that for each data point the
predicted or manually assigned class label is indicated by color.

Bernard et al. [5] raised the concern whether the predicted labels
should be displayed, as they might lead to possible bias among users.
We argue that this information is necessary for users to evaluate
the current state of the model. Furthermore, Bernard refers the
criticism primarily to collaborative scenarios where labels of one
analyst might influence the decisions of another analyst, while our
approach aims at the use of one user at a time.

To distinguish labeled fromunlabeled data points, they are shown
by different icons in the scatter plot, showing the coverage of labeled
data points. Moreover, this provides users with a visual indication of
their impact on the system, since not only the icons of the instances
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manually labeled by the users change but also the color, size, and
icons of the other instances. Visualizing the model’s improvement
achieved by the users should increase their perceived relevance in
the process and motivate them [19]. In addition to shape and color,
a further visual cue is offered by encoding the size of the icons w.r.t.
the calculated utility of each instance (see eq. (1)).

3.2.3 User Guidance. The approach supports users by the first two
degrees of guidance [9], i.e. orienting and directing, in the selection
of instances. With the help of visualization, users can compare
their mental models containing ideas about an ideal model with the
current state of the model. They can evaluate the current model
and derive steps to label and add instances to the training set to
improve the model. To guide users to identify useful instances,
the measures introduced in the Candidate Suggestion step are used
(see Section 3.1). To involve the model in the instance selection,
the visualization is used for the suggestion of instances. A highly
distinct icon of increased size is used with a signal color not used for
any other class. Thus, the model’s recommendation clearly stands
out and can be easily noticed by the users. Inspired by findings
on the perception of interactivity, we exploit visual cues such as
shape, color, and size to direct users’ attention to specific areas
in the visualization. Especially the star icon, as an “abstract icon”
[6], is predestined to convey the information that the respective
instance is informative. Many modern interfaces use the star icon
as symbolism for favorites or featured items.

3.2.4 Interactive Selection. The presented visualization is an inter-
active interface that allows users to interact with the visualization,
the data, and thus indirectly with the model. Besides simple interac-
tions following the information-seeking mantra [26], like changing
the displayed area of the visualization by moving, zooming, or filter-
ing, users can also perform semantic interactions. These include the
selection of instances and the assignment of labels. Users can select
and label several instances at once in one interaction to make the
process more efficient. The selection of the instances to be labeled
is done exclusively by the user, guided by the discussed visual cues.

3.3 Design and Implementation
We implemented a prototype to evaluate the effectiveness of our ap-
proach. The logic behind the utility calculation, recommendations,
and projection were implemented using scikit-learn1 and modAL2
in Python. For the user interface a javascript-based web application
was implemented, using Plotly3 for interactive visualizations. The
user interface consists of four main components (Fig. 2):

3.3.1 Instance Overview and Selection. The Instance Overview and
Selection area is the central element of the workspace (see the center
of Fig. 2). It shows the projected instances with the corresponding
visual mappings for the status, class, and utility. A legend shows the
color assigned to each class, which is used consistently throughout
the tool to identify that class. Labeled instances are represented by
an outlined diamond with a dot, to distinguish them easily from
unlabeled circles. Suggested instances, indicated by the red stars,
visibly stand out from the surrounding instances. Using the toolbar,
users can move the displayed area and zoom in. By default, the
2https://modal-python.readthedocs.io/en/latest/
3https://plotly.com/javascript/

lasso tool is active so that users can select interesting instances by
clicking and circling around them. This view allows users to select
instances from potentially interesting areas for review and labeling.

3.3.2 Detail View and Filtering. All instances selected in Instance
Overview and Selection are displayed in descending order according
to their utility in the viewDetail View and Filtering (see bottom right
in Fig. 2). In this list view, the user gets additional details about each
selected instance such as a visual representation along with the
manually assigned or predicted label. The corresponding symbol
of each instance is displayed so that instances in the list view can
be associated with data points in the visualization. Moreover, the
instance that the user hovers over in the list is highlighted in the
visualization. The utility (see eq. (1)) of the instance is shown by a
utility bar so that it can be better perceived and compared than a
plain number. By clicking on the corresponding instance in the list
view, users can filter out non-interesting or unwanted instances
from the selection. When working with image data, small preview
images are included in the list view. For more complex, multi-modal
data, an appropriate visualization should be embedded. As the focus
of this work is on guiding users in their selection, this challenge
is beyond the scope of this work and can be addressed in further
work. With this view, selected instances from the overview can be
examined more closely and filtered if necessary.

3.3.3 Labeling Interface. Users can assign class labels to the re-
maining selected instances in the Labeling Interface (top right in
Fig. 2). A pre-defined class alphabet was used for the prototype.
However, for scenarios with an unknown number of classes, our ap-
proach can be extended to add new classes as required. In addition
to the explicit assignment of labels, users can accept labels predicted
by the model. This is especially useful in an advanced state of the
model, where predictions are usually correct. Thus, at the end of
the interactive labeling process, all remaining unlabeled instances
can be automatically labeled by the model with one button click.

3.3.4 Support Visualizations. On the left of the workspace (Fig. 2)
additional information about the model’s current state and the dis-
tribution of the labels are shown. For the prototype, the calculated
accuracy of the model was displayed for orientation. This infor-
mation is not available in a real application but can be replaced
by information such as hyperparameters of the model. Also, data
on the distribution of the labels is shown. Since the class alphabet
used for the prototype was known, the user can be informed about
classes that have not been labeled yet. This is an attempt to prevent
classes from being overlooked. A bar plot shows the distribution of
the assigned labels over the respective classes encouraging users
to distribute labels evenly to prevent bias in the model. For data
sets with imbalanced classes, this plot can be extended to include
predicted labels allowing users to see if the model reflects the actual
known distribution of labels. If the distribution is unknown, this
view can help to develop a mental model of the data set.

4 EVALUATION: USER SURVEY
While RQ1 was addressed by the design of the approach itself,
RQ2 of how guiding users affects their selection of instances to
be labeled, was evaluated with a user survey. 19 master students
familiar with machine learning and visualization were recruited.
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Figure 2: Workspace of the tool used for the study with the areas Instance Overview and Selection (center), Detail View and
Filtering (bottom right), Labeling Interface (top right), and Support Visualizations (left). The selected instances from Instance
Overview and Selection area in the Detail View and Filtering view are ordered by their utility, which is visualized by a bar.

4.1 Study Setup
The participants were asked to label a subset of 1000 instances
from the MNIST data set [18] which contains 10 classes with the
handwritten digits 0...9.

The study was subdivided into two subsequent setups using the
same prototype (depicted in Fig. 2), without the guidance by visual
cues in setup 1 (S1) and with guidance in setup 2 (S2). In both setups,
the interactive visualization contains the separation of classes by
color and a distinction between labeled and unlabeled instances.
S2 additionally includes guiding users through the visualization of
the instances’ utility (see Section 3.1) by the size of the icons and
highlighting recommended instances with colored stars. After an
initial demonstration of the prototype and the possibility to get
familiar with the tool using a different data set, the two setups were
subsequently conducted with a 10 minutes time limit for each. Two
different subsets of the MNIST data set were used.

After completing the two tasks, the participants were asked to
complete a digital questionnaire (see Table 1). The questionnaire
included questions on subjective perceptions of the difficulty and
familiarity of identifying and selecting instances under the two se-
tups, preferences, and informal feedback. The answer options were
formulated as 5-point Likert scales. Further, questions with plain
text were posed to allow for open feedback. The questionnaire was
designed to determine how users assess and perceive the influence
of guidance on their selection. Furthermore, it should be evaluated
which particular factors influence the users’ selection of instances
to better understand the guidance of users for labeling data.

Table 1: Questions on user self-assessment to identify inter-
esting instances for labeling and the influence of guidance
on their selection using 5-point Likert scales.

Question Text Answer options [1...5]

Q1: How confident were you in identifying in-
teresting instances WITHOUT recommendation
stars and different sized icons?

insecure neutral confident

Q2: How difficult did you find the identification
of interesting instances WITHOUT support of the
stars and different sized icons?

hard neutral easy

Q3: How confident were you in identifying in-
teresting instances INCLUDING recommendation
stars and different sized icons?

insecure neutral confident

Q4: How difficult did you find the identification
of interesting instances INCLUDING support of
the stars and different sized icons?

hard neutral easy

Q5: How much did the recommendation stars and
the icons INCLUDING different sizes influenced
your decision, which instances are interesting?

weak neutral strong

Q6: In which way did the recommendation stars
and the icons INCLUDINGdifferent sizes influence
your decision, which instances are interesting?

confusing neutral strengthening

Q7: How did you experience the recommenda-
tion stars and Icons INCLUDING different sizes
when identifying interesting instances compared
to identification WITHOUT additional support?

hindering neutral helpful
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Figure 3: Perceived confidence of users (top) when selecting
instances with user guidance (Q1) and without (Q3). No user
stated being insecure in S2. Perceived difficulty of users (bot-
tom) in identifying instances with user guidance (Q2) and
without (Q4). The number of users having difficulties iden-
tifying instances for labeling decreased by more than half
compared to S1 without guidance.

4.2 Study Results
The answer distributions regarding perceived confidence (Fig. 3
top), difficulty (Fig. 3 bottom), and the influence of guidance (Fig. 4)
were analyzed and compared. To analyze further impressions and
opinions of the users about the tool and its two versions, we con-
ducted an explorative analysis of the answers to the open questions.

4.2.1 Perceived Confidence. Users’ self-assessment of the perceived
confidence in identifying interesting instances (Fig. 3 top) reveals
that the majority of users felt confident in finding interesting in-
stances regardless of the guidance. None of the users stated that
they were insecure in their self-assessment of the version including
user guidance. 16 of 19 users felt confident in the guided selection.

The users’ perception of the unguided version shows that the
majority of users found it difficult to identify interesting instances
for labeling (Fig. 3 bottom). In the guided version, 34 of the users
reported that it was easy for them to identify instances. Only 3 users
found it “very hard”. Compared to the version without guidance, the
number of users who found it easy to identify interesting instances
more than doubled in the version including user guidance.

4.2.2 Perceived Influence. Amajority of users stated that they were
strongly influenced in their selection by the guidance through the
emphasis and recommendations and that this influence was ad-
ditionally helpful. Half of the users said that the highlights and
recommendations encouraged them in their choice. Only two resp.
three of the 19 users reported negative experiences that the guid-
ance had hindered or confused them. Part of them stated that they
did not make use of the offered guidance and did neither pay at-
tention to the icon size nor the recommendations. One participant
claimed that the recommendations introduced a bias towards cer-
tain instances and classes, thus compromising his/her intuition
suggesting that guidance by icon size only would be sufficient.

4.2.3 Feedback on the Tool. The participants provided plain text
feedback on the two versions of the tool. Users liked the version
without user guidance that theywere not influenced or distracted by
the recommendations. In S1 they did not have to search for the stars.

Figure 4: Perceived strength (top), perceived type (middle),
and perceived usefulness (bottom) of the guidance’s influ-
ence by the users.

The users stated that they recognized the distribution and cluster
of the instances via the density of the data points well. However,
the majority of users reported in the version without guidance they
often had no orientation on what instances should be selected and
labeled next. In general, it was difficult to find interesting instances
due to the unclear presentation of the data points.

For the second version of the tool including recommendations
and varying sizes of the icons, users said that it gave them clues as to
where it would make sense to label. More information was available
to find instances. Users felt that the model’s accuracy increased
quicker and that they had more confidence in their selection.

13 of 19 participants preferred S2 including user guidance. Ac-
cording to them, the version is clearer, faster, and more effective to
work with owing to the guidance. They liked that the tool allows for
a more confident selection of instances, as the tool reinforces their
decision. While it might seem obvious that the guided version is
better for navigating users towards interesting instances, we argue
that any general navigation solution might also interfere with the
users’ intuition and decision-making. Our study showed that some,
yet only very few, participants preferred the unguided version.

In general, users enjoyed the clarity and easy handling of both
versions. Apparently the tool has made a rather exhaustive and
repetitive task enjoyable. For future versions, users demand more
convenience through features like hotkeys, the ability to filter la-
beled data or to toggle the guidance on and off.

5 CONCLUSION
We presented an approach to interactively label instances that im-
plements the VIAL process, providing a combination of user-based
selection and model-based suggestions to identify candidates for
labeling (Section 3). Based on an AL query strategy, the estimated
benefit for all unlabeled instances as well as recommendations of
particularly useful instances are calculated and then presented to
the user via visual cues in an interactive visualization. The ap-
proach was evaluated with a user survey (Section 4) to determine
the effects of user guidance. The use of visual cues in an interactive
visualization offers a promising strategy for guiding users to fo-
cus their attention on specific regions and instances. However, the
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influence of the individual cues on an accurate representation of
the data set must be taken into account, otherwise, distortions may
occur. The results of the survey show that guidance influences the
selection and labeling strategy and thus, according to the majority
of participants, makes labeling easier and more reliable.

Possible limitations of our work result from the use of the simple
data set MNIST. It contains only a few, well distinguishable classes,
which are also easy to represent visually. It is possible that the colors
used in the individual classes may not be as visually distinguishable
as their number increases. It is also open how more complex data
can be visually represented in the detail view. Besides, we have
performed our experiment on a subset of the data set. A larger
number of instances could lead to a confusing visualization that
users can no longer work with. On the other hand, strategies for a
reasonable selection of instances can be used, so that, as in our case,
only a manageable subset is used, and the labels are transferred to
the entire data set via the model.

In future work, we want to conduct a user study measuring the
progress of labeling in addition to the reported self-assessment.
As part of this, we want to use an additional data set to demon-
strate the capabilities of our tool and how the user interface can
handle different scenarios. Furthermore, we will analyze how the
system processes instances whose class labels are ambiguous or are
changed frequently by the users throughout the labeling process.
Further research could be conducted on how the degree and form
of guidance can be adapted to the users’ individual needs so that
they can either determine the degree of guidance themselves to
receive recommendations or precise instructions for their selection.
Besides, it would be useful to know whether a model or algorithm
can automatically determine what kind of guidance a user needs.
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