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Abstract. A major challenge during the development of Machine Learn-
ing systems is the large number of models resulting from testing different
model types, parameters, or feature subsets. The common approach of
selecting the best model using one overall metric does not necessarily
find the most suitable model for a given application, since it ignores the
different effects of class confusions. Expert knowledge is key to evalu-
ate, understand and compare model candidates and hence to control the
training process. This paper addresses the research question of how we
can support experts in the evaluation and selection of Machine Learning
models, alongside the reasoning about them. ML-ModelExplorer is pro-
posed — an explorative, interactive, and model-agnostic approach utilis-
ing confusion matrices. It enables Machine Learning and domain experts
to conduct a thorough and efficient evaluation of multiple models by tak-
ing overall metrics, per-class errors, and individual class confusions into
account. The approach is evaluated in a user-study and a real-world case
study from football (soccer) data analytics is presented.
ML-ModelExplorer and a tutorial video are available online for use with
own data sets: www.ml-and-vis.org/mex
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1 Introduction

During the development of Machine Learning systems a large number of model
candidates are generated in the training process [27] by testing different model
types, hyperparameters, or feature subsets. The increased use of Deep Learning
[19] further aggravates this problem, as the number of model candidates is very
large due to the enormous number of parameters. This paper is motivated by
the following observations for multi-class classification problems:

1. Automatically selecting the best model based on a single metric does not
necessarily find the model that is best for a specific application, e.g. different
per-class errors have different effects in applications.
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2. In applications with uncertain relevance and discriminative power of the
given input features, models can be trained on different feature subsets.
The results of the models are valuable for drawing conclusions about the
feature subsets, since the level of contribution of a feature to the classification
performance is unknown a priori.

We argue that expert knowledge is key to evaluate, understand and compare
model candidates and hence to control the training process. This yields the
research question: How can we support experts to efficiently evaluate, select and
reason about multi-class classifiers?

This paper proposes ML-ModelExplorer which is an explorative and inter-
active approach to evaluate and compare multi-class classifiers, i.e. models as-
signing data points to N > 2 classes. ML-ModelExplorer is model-agnostic, i.e.
works for any type of classifier and does not evaluate the inner workings of the
models. It solely uses the models’ confusion matrices and enables the user to
investigate and understand the models’ results. It allows to take different overall
metrics, the per-class errors, and the class confusions into account and thereby
enables a thorough and efficient evaluation of models.

We believe that in a multi-class problem — due to the high number of errors
per model, per class and class confusions — interactively analysing the results at
different levels of granularity, is more efficient and will yield more insights than
working with raw data. This hypothesis is evaluated with a user study and a real-
world case study. In the case study on football data, we examine how successful
attacking sequences from different parts of the pitch can best be modelled using
a broad range of novel football-related metrics.

This paper makes the following contributions:

1. Provision of a brief review of the state-of-the-art in visual analysis of multi-
class classifier results (Section [2)).

2. Proposal of a data- and model-agnostic approach for the evaluation, com-
parison and selection of multi-class classifiers (Section [3] Section [)).

3. Evaluation with a user study (Section .

. Validation of real-world relevance with a case study (Section [6).

5. Supply of ML-ModelExplorer for use with own data sets.

N

2 Related work

The general interplay of domain experts and Machine Learning has been sug-
gested in literature, for example in [T4I0/3I30]. Closely related to the problem
discussed in this paper, approaches to interactively analyse the results in multi-
class problems have been proposed and are briefly surveyed in the following.

In [29] the authors proposed Squares which integrates the entire model eval-
uation workflow into one visualisation. The core element is a sortable paral-
lel coordinates plot with the per-class metrics, enhanced by boxes showing the
classification results of instances and the thumbnails of the images themselves.
ConfusionWheel [I] is a radial plot with classes arranged on an outer circle,
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class confusions shown by chords connecting the classes, and histograms on the
circle for the classification results of all classes. ComDia+ [23] uses the models’
metrics to rank multiple image classifiers. The visualization is subdivided into
a performance ranking view resembling parallel coordinates, a diagnosis matrix
view showing averaged misclassified images, and a view with information about
misclassified instances and the images themselves. Manifold [33] contrasts multi-
ple models, showing the models’ complementarity and diversity. Therefor it uses
scatter plots to compare models in a pairwise manner. A further view indicates
the differences in the distributions of the models at the feature level. INFUSE
[16] is a dashboard for the selection of the most discriminative features in a high-
dimensional feature space. The different feature rankings across several feature
ranking methods can be interactively compared.

The idea from [I] of using a radial plot was used in one visualisation in ML-
ModelExplorer. While Squares [29] and ConfusionWheel [1] are designed for the
evaluation of a single classifier, ML-ModelExplorer has the focus of contrasting
multiple models. ComDia+ [23] and Manifold [33] allow to compare multiple
models, where the view of averaged images constrains ComDia+ to (aligned)
images. Manifold is a generic approach which in addition to classification is ap-
plicable to regression. While the mentioned approaches allow to refine the anal-
yses to instance or feature level, they require the input data. ML-ModelExplorer
solely works on the models’ confusion matrices and is hence applicable to the
entire range of classification problems, not constrained to data types like images
or feature vectors. A further reason not to incorporate the data set itself is, that
having to upload their data into an online tool will discourage practitioners and
researchers from testing the approach. In addition, in contrast to some of the
aforementioned approaches, ML-ModelExplorer is made publicly available.

3 Problem analysis: Evaluating multi-class classifiers

For a multi-class classification problem the approach incorporates all tested mod-
els M into the user-driven analysis. The output of a multi-class classification
problem with |C] classes denoted as C; can be presented as a confusion matrix
of dimension |C| x |C| (see e.g. [15]). The |C| elements on the diagonal show the
correct classifications, the remaining elements show the |C| x (|C| — 1) different
confusions between classes. An example is shown in Table[I} where in this paper
columns correspond to class labels and rows show the predictions.

class label Cy

class label Cs

class label C3

prediction Ci 70 (0.7) 30 (0.15) 0 (0.0)
prediction Ca 20 (0.2)] 150 (0.75) 50 (0.1)
prediction Cs 10 (0.1) 20 (0.1)] 450 (0.9)

Table 1. A confusion matrix of an imbalanced three-class classification problem with
absolute numbers and percentages (0...1).
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From the confusion matrix, a variety of metrics can be deduced [I5I6]. In
the following, the metrics relevant for this paper are introduced. The absolute
number of correctly classified instances of class C; is referred to as true pre-
dictions and denoted as TP¢;. The true prediction rate — also termed recall or
true positive rate — for class C; is denoted as TPR¢, and is the percentage of
correctly classified instances of class C;:

TP,

TPR¢, = 1
“ 7 a M

The per-class error E¢, is given by:
Ec, =1— TPRg, (2)

The overall accuracy acc refers to the percentage of correctly classified in-
stances of all classes C;

1 |C|
= — TP¢. 3
acc N l:zl c, (3)

Taking into account potential class imbalance in the data set, can be achieved
with the macro-average recall recall,,, which is the average percentage of cor-
rectly classified instances of all classes C;:

|C]
recallgng = ﬁ Z TPR¢, (4)
i=1

The common approach of model selection based on a single metric, e.g. over-
all or weighted accuracy, does not necessarily find the most suitable model for
an application, where different class confusions have different effects [11]. For
example a model might be discarded due to a low accuracy caused by frequently
confusing just two of the classes, while being accurate in detecting the remain-
ing ones. This model can be of use for (a) building an ensemble [2532], (b) by
refining it with regard to the two confused classes, or (c) to uncover mislabelling
in the two classes.

Target users of ML-ModelExplorer are (1) Machine Learning experts for eval-
uation, refinement, and selection of model candidates, and (2) domain ewpertﬂ
for the selection of appropriate models for the underlying application and for
reasoning about the discriminative power of feature subsets.

Based on the authors’ background in Machine Learning projects and the
discussion with further experts, Scrum user stories were formulated. These user
stories guided the design of ML-ModelExplorer.

— User story #1 (Overview): As a user I want an overview that contrasts
the results of all |[M| models, so that I can find generally strong or weak
models as well as similar and outlier models.

! domain experts are assumed to have a basic understanding of classification problems,
i.e. understand class errors and class confusions
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— User story #2 (Model and class query): As a user I want to query
for models based on their per-class errors, so that I can understand which
classes lead to high error rates over all | M| models and which classes cause
problems only to individual models.

— User story #3 (Model drill-down): As a user I want to drill-down into
the details of one model My, so that I can conduct a more detailed analysis
e.g. regarding individual class confusions.

— User story #4 (Model comparison): As a user I want to be able to select
one model M;, and make a detailed comparison with a reference model M,
or the average of all models My,4, so that I can understand where model
M}, needs optimization.

4 The approach: ML-ModelExplorer

ML-ModelExplorer provides an overview of all models and enables interactive
detailed analyses and comparisons. Starting with contrasting different models
based on their overall metrics, more detailed analyses can be conducted by goal-
oriented queries for models’ per-class results. A model’s detailed results can be
investigated and compared to selected models.

ML-ModelExplorer uses a variety of interactive visualisations with highlight-
ing, filtering, zooming and comparison facilities that enable users to (1) select
the most appropriate model for a given application, (2) control the training pro-
cess in a goal-oriented way by focusing on promising models and further refining
them, and (3) reason about the effect of features, in the case where the models
were trained on different feature subsets.

The design was governed by the goal to provide an approach that does not
require specific knowledge in data visualisation or the familiarisation with new
visualisation approaches, since domain experts do not necessarily have a Data
Science background. Consequently a combination of well-known visualisations,
that can be reasonably assumed to be known by the target users, are used as
key elements. Examples are easily interpretable scatter plots, box plots, bar
charts, tree maps, and chord diagrams. In addition some more advanced — but
common — interactive visualisations were utilised, i.e. parallel coordinates or the
hierarchical sun burst diagram. In order to compensate differing prior knowledge
or preferences of users, the same information is redundantly communicated with
different visualisations, i.e. there are multiple options to conduct an analysis.

ML-ModelExplorer is implemented in R [26] with shiny [4] and plotly [12]
and can be used onlindZ with own data sets and a tutorial vided?is available. Dif-
ferent characteristics of the models’ results are emphasized with complementary
views. The design follows Shneiderman’s information seeking mantra [31], where
overview first is achieved by a model overview pane. In order to incrementally
refine the analysis, zoom + filter is implemented by a filtering facility for models
and classes and by filtering and zooming throughout the different visualisations.

2 ML-ModelExplorer online: [www.ml-and-vis.org/mex
3 ML-ModelExplorer video: https://youtu.be/I07IWTUxK_Y
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Details-on-demand is implemented by views on different detail levels, e.g. model
details or the comparison of models. The design was guided by the user stories in
Section [3] the mapping of these user stories to visualisations is given in Table

User story Implemented by
per-model metrics plot
model similarity plot

User story #1 (Overview)

per-class errors query view
class error radar chart
error hierarchy plot
confusion matrix view
User story #3 (Model drill-down) confusion circle

bilateral confusion plot
confusion tree map

User story #2 (Model and class query)

delta confusion matrix
delta radar chart
Table 2. Mapping of user stories to interactive visualisations.

User story #4 (Model comparison)

In the following, the views are introduced where screenshots illustrate an
experiment with 10 convolutional neural networks (CNN) [28] on the MNIST
data set [I8], where the task is to classify the handwritten digits 0...9. CNNs
with a convolution layer with 32 filters, a 2 x 2 max pooling layer, and a
dropout of 0.2 were trained. The hyperparameters kernel size k, which speci-
fies the size of the filter moved over the image, together with the stride were
varied from k = 2 to k = 11, resulting in 10 model candidates denoted by
M1_CNNg—2...M10_CNNg_1;.

4.1 Model overview pane

The model overview pane (Fig. [1]) is subdivided into three horizontal subpanes
starting with (1) a coarse overview on the top showing the summarised metrics
of all models, e.g. the overall accuracy and the dispersion of the true prediction
rates TPR¢, over all classes C;. The middle subpane (2) contrasts and allows
to query the per-class errors E¢,. On the bottom (3), a detailed insight can be
interactively gained by browsing the models’ class confusions:

Model metrics subpane (1):

— Per-model metrics plots: This set of plots gives an overview of generally good
or weak models (Fig. |1} 1), hence serving as a starting point to detect po-
tential model candidates for further refinement or for the exclusion from the
training process. The per-model metrics can be viewed at different levels of
granularity with the following subplots: a list of ranked and grouped models,
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Fig. 1. Model overview pane contrasting the results of ten multi-class classifiers on the
MNIST data set. The models are ranked according to their accuracy and classification
imbalance in 1) a). The non-monotonic effect of the varied kernel size in the used
convolutional neural networks can be seen in 2) a).

a line plot with the model accuracies, and a box plot with the dispersions of
recall, precision and F1-score.

In the model rank subplot (Fig. [I} 1 a), the models are ranked and grouped
into strong, medium and weak models. For the ranking of the models, the
underlying assumption is, that a good model has a high accuracy and a low
classification imbalance, i.e. all classes have a similarly high detection rate.
In the following, a metric to rank the models is proposed. In a first step, the
classification imbalance CT is defined as eq. , which is the mean deviation

of the true prediction rates TPR¢, from the model’s macro-average recall,
where CI =0 if TPR(, is identical for all C;:

IC|

1
Z | TPR ¢, — recallgug) (5)
i=1

Cl = —
C]
Each model M, is described by the vector 7, = (recallqyg, CI). To ensure
equal influence of both metrics, the components of 4 are min-max scaled
over all models, i.e. vj = (recalll,, , CI') with recall,,,, = [0,1] and CI' =

avg’ avg
[0,1]. To assign greater values to more balanced models, CI’ is substituted
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by 1 — CI' and the L1-norm is then used to aggregate the individual metrics
into a model rank metric:

1
Mo, = lrecalll,, + (1 = CI') (6)

where 3 scales Mqnp, to a range of [0,1], allowing for direct interpretation
of Mrank,. The models are ranked by M,qnk,, where Myqni, — 1 correspond
to stronger models.

In addition to ranking, the models are grouped into good, medium,weak,
which is beneficial for a high number of models. Since the categorization of
good and weak models is not absolute, but rather dependent on the complex-
ity of the problem, i.e. the data set, the grouping is conducted using reference
models from M. From the |M| models, the best model M), and the weakest
model M, are selected as reference models utilizing M4k, . In addition a
medium model M,,.q is selected, which is the median of the ranked models.
Following that, the | M| models are classified as any of good, medium, weak
using a l1-nearest neighbour classifier on My, , encoded with green, yellow,
and red (see Fig.[1} 1 a)).

In the second subplot the models’ accuracies are contrasted with each other
in order to a allow a coarse comparison of the models. In addition the accu-
racies are shown in reference to a virtual random classifier, randomly classi-
fying each instance with equal probability for each class, and to a baseline
classifier, assigning all instances to the majority class.

In the third subplot, the models are contrasted using box plots showing the
dispersions of the per-class metrics. Box plots positioned at the top indicate
stronger models while the height indicates a model’s variability over the
classes. For the MNIST experiment, the strong and non-monotonic effect of
the kernel size is visible, with 7, 8, and 9 yielding the best results and a
kernel size of 6 having a high variability in the classes’ precisions.

Model similarity plot: This plot shows the similarities between models (Fig.
1b). For each model the overall accuracy and the standard deviation of the
true prediction rates TPR¢,VC; are extracted, and presented in a 2D-scatter
plot. Similar models are thereby placed close to each other, where multiple
similar models might reveal clusters. Weak, strong, or models with highly
different results become obvious as outliers. For the MNIST data set, the plot
reveals a group of strong models, with high accuracies and low variability
over the classes: M6_CNNy_7, M7_CNNj_g, M8_CNNy_g, and M2_CNNy,_3.

Per-class errors subpane (2):

— Per-class errors query view: This view shows the errors E¢, and allows to

query for models and classes (Fig. [1} 2a). The errors are mapped to parallel
coordinates [I3] which show multi-dimensional relations with parallel axes
and allow to highlight value ranges. The first axis shows the models, each
class is mapped to one axis with low E¢, at the bottom. For each model, line
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segments connect the errors. For the MNIST data, the digits 0 and 1 have
the lowest errors, while some of the models have high errors on 2 and 5..

— Class error radar chart: The per-class errors E¢, can be interactively anal-
ysed in a radar chart, where the errors are mapped to axes (Fig. |1} 2b). The
models’ results can be rapidly contrasted, larger areas showing high F¢,,
and the shape indicating high or low errors on specific classes. The analysis
can be incrementally refined by deselecting models. In the MNIST experi-
ment, models with general weak performance are visible by large areas and
it reveals that all models have high detection rates TPR¢, on digit 0 and 1.

Class confusions subpane (3):

— FError hierarchy plot: This plot allows to navigate through all errors per
model and class in one view (Fig. |1} 3a). The hierarchy of the overall errors for
each model (1 — recallywg), the per-class errors E,, and the class confusions
are accessible in a sun burst diagram. The errors at each level are ordered
clockwise allowing to see the ranking. One finding in the MNIST experiment
is, that the model with the highest accuracy (M8_CNNj_g) has its most class
confusions on digit 9, which is most often misclassified with 7, 4, and 1.

4.2 Model details pane

The model details pane shows different aspects of one selected model, here
M3_CNNy—4 (see Fig. . The following four plots are contained:

Bilateral Confusion Plot

Fig. 2. Model details pane showing one selected model. Per-class errors and class con-
fusions can be investigated.
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— Confusion circle: This plot (Fig. |2, a) is a reduced version of the confusion

wheel proposed in [I]. The |C| classes are depicted by circle segments in one
surrounding circle. The class confusions are shown with chords connecting
the circle segments. The chords’ widths encode the error between the classes.
Individual classes can be highlighted and the detailed errors are shown on
demand. For the MNIST experiment, the class confusions of M3_CNNy_4
reveal that e.g. digit 3 is most often misclassified as 5, 8, and 9. On the other
hand, of all digits misclassified as 3, digit 5 is the most frequent one.
Confusion matriz: The model’s confusion matrix is shown in the familiar
tabular way, with a colour gradient encoding the class confusions (Fig.[2| b).
Bilateral confusion plot: In an interactive Sankey diagram (Fig. , misclassi-
fications can be studied (class labels on the left, predictions on the right), c).
By rearranging and highlighting, the focus can be put on individual classes.
Confusion tree map: A model’s per-class errors E¢, are ranked in a tree
map allowing to investigate how E¢, is composed of the individual class
confusions, where larger areas correspond to higher errors (Fig. d). If
class C; is selected, the ranked misclassifications to C1...C|¢| are shown. In
the MNIST experiment, for M3_CNNy_4 the weakness is digit 7, which in
turn is most frequently misclassified as 9 and 2.

4.3 Model comparison pane

In the model comparison pane a model M} can be selected and compared to a
selected reference model M, or to the average over all models M., (Fig. [3).

Delta Confusion Matrix

Fig. 3. Model comparison pane: A selected model can be compared with a selected
reference model and with the average of all models.

— Delta confusion matriz: The class confusions of M} can be contrasted to

a reference model M, showing where M} is superior and where it needs
optimization (Fig.[3] a). The difference between the class confusions is visible
per cell with shades of green encoding where M} is superior to M, and
red where M, is superior, respectively. In the MNIST experiment, while
M5_CNNy_g is in general the weaker model compared to M1_CNNy_o, it
less frequently misclassifies e.g. 7 as 9 and 5 as 8.
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— Delta error radar chart: The differences in the per-class errors of a model
M, w.r.t. a reference model M, and the average My, is illustrated in a
radar chart (Fig. |3} b). The area and shape in the radar chart allows to
rapidly draw conclusions about weak or strong accuracies on certain classes
and about differences between the models. While in the MNIST experiment
M1_CNNy_5 has slightly higher errors on digits 5, 6, 7 and approximately
similar errors on 0 and 1, it performs significantly better than M5_CNN—g
and the overall average on the remaining digits.

5 Evaluation: user study

A user study was conducted in order to compare ML-ModelExplorer to the com-
mon approach of working on a Machine Learning library’s raw output. Python’s
scikit-learn [24] was used as a reference. Two typical activities were tested:

1. evaluation and selection of a single model
2. controlling the training process by identifying weak models to be discarded,
strong models to be optimised, and by uncovering optimisation potential

For these two activities, hypotheses H1 and H2 were formulated and concrete
typical tasks were defined in Table[3] The tasks were solved by two disjoint groups
of users using either Python (group A) or ML-ModelExplorer (group B). While
using two disjoint groups halves the sample size, it avoids a learning effect which
is to be expected in such a setting. The efficiency is measured by the number of
correct solutions found in a given time span, i.e. [correct solutions/minute].

Eighteen students with industrial background, enrolled in an extra occupa-
tional master course, participated in the user study. The participants had just
finished a machine learning project with multi-class classification and had no
specific knowledge about data visualisation. The 18 participants were randomly
assigned to group A and B resulting in a sample size of N = 9 for a paired
test. Group A was given a jupyter-notebook with the raw output pre-loaded
into Python’s pandas data structures and additionally text file with all confu-
sion matrices and metrics. These participants were allowed to use the internet
and a pandas cheat sheet was handed out. Group B used ML-ModelExplorer
and a one-page documentation was handed out.

As a basis for the user study, the results of 10 different models on the MNIST
data set [18] were used, as shown in Section [4] Prior to the study, the data, the
supplied Python code and ML-ModelExplorer were briefly explained. A max-
imum of 25 minutes for the tasks of H1 and 15 minutes for H2 was set. The
tasks were independently solved by the test participants, without intervention.
No questions were allowed during the user study. The individual performances
of the students are shown in Fig. [4l Note that the maximum possible score for
the tasks within H1 was 3, whereas the maximum possible score for the tasks
within H2 was 16. Therefore the efficiency of the students is calculated using the
number of correct answers as well as the required time to solve the tasks.
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Hilnun With ML-ModelExplorer the selection of the best model is not more
efficient than with a ML library’s raw output.
H1alternative |With ML-ModelExplorer ... is more efficient.

T11 Find the model with the highest overall accuracy.

T1- Find the model with the lowest error on class 8.

T13 For model M8 find the two classes that class 8 is most frequently
misclassified as.

H2nun With ML-ModelExplorer controlling the training process is not more

efficient than with a ML library’s raw output.
H2Aaternative |With ML-ModelExplorer ... is more efficient.

T2 Find the 3 models with the highest and the 3 with the lowest accu-
racies.

T29 For model M8, find the 3 classes with the highest per-class errors.

T23 For model M8, find the 3 pairs of classes most frequently confused.

T24 Find the classes, where M8 has a higher error than M6.

T25 Compare M8 and M6 and from the class confusions where M8 has a

higher error, find the 2 with the highest differences.
Table 3. Hypotheses and typical tasks to be solved in the user study.

The distribution of the efficiencies is shown in Fig. [5} indicating that partici-
pants using ML-ModelExplorer were more efficient. In addition there appears to
be a learning effect: for the tasks connected with hypothesis H2 the participants
of both groups were more efficient than for HI1.

The hypotheses H1py,;; and H2pn,;; state that there is no statistically sig-
nificant difference in the efficiencies’ mean values between group A (raw output
and python code) and group B (ML-ModelExplorer). One-sided paired t-tests
were conducted with a significance level of e = 0.05. The resulting critical values
are cy1 = 0.191 and cyo = 0.366. The observed differences in the user study are
TBy, — TAy, = 0.376 and Tp,, — Ta,, = 0.521, where all values are given as
[correct solutions/minute].

Hence, due to (Tp,, — Tay,) > cm1 and (Tp,, — Tay,) > Cm2, both null
hypotheses H1 ., and H2p,;; were rejected, i.e. ML-ModelExplorer was found
to be more efficient for both of the typical activities (1) evaluation and selection
of a single best model and (2) controlling of the training process.

6 Case Study: Analysing tactics in football

In the following case study, the applicability of ML-ModelExplorer to real-world
problems is evaluated with a multi-class classification problem on tracking data
from football (soccer). In football, a recent revolution has been unchained with
the introduction of position tracking data [22]. With the positions of all the
players and the ball, it is possible to quantify tactics using the players’ locations
over time [2T]. Machine Learning techniques can be adopted to fully exploit the
opportunities tracking data provides to analyse tactical behaviour [9]. Although
without a doubt Machine Learning will be a useful addition to the tactical anal-
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Fig. 5. The distribution of [correct solutions/minute] when analysing raw output with
Python (H1l.raw, H2 raw) and with ML-ModelExplorer (H1_mex, H2_mex).

yses, one of the major challenges is to involve the domain experts (i.e., the
coaching staff) in the decision-making process. Engaging the domain expert in
the model selection process is crucial for (fine-) tuning the models. Specifically,
the domain expert can play an important role in identifying the least disruptive
class confusions. With better models, and models that are more supported by
the domain experts, Machine Learning for analysing tactics in football will be
more quickly embraced.

Football is an invasion-based team sport where goals are rare events, typically
2-4 goals out of the 150-200 offensive sequences in a 90 minutes match [2]. It is
thus important to find the right balance between creating a goal-scoring oppor-
tunity without weakening the defence (and giving the opponents a goal-scoring
opportunity). For example, a team could adopt a compact defence (making it
very difficult for the opponents to score, even if they outclass the defending
team) and wait for the opponent to lose the ball to start a quick counter-attack.
If the defence is really compact, the ball is usually recovered far away from the
attacking goal, whereas a team that puts a lot of pressure across the whole pitch
might recover the ball in a promising position close to the opponent’s goal. To
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formulate an effective tactic, analysts want to know the consequences of losing
(or regaining) the ball in specific parts of the pitch. This raises the question:
How can successful and unsuccessful attacks that started in different parts of
the pitch (see Fig. @ be modelled?

301 Zone 1 2 3 4 Total
N: 4952 2671 2035 986 10,644

207 Success: 7.2% 12.5% 21.4% 25.0% | 129%

10 A

Y-position (m)
o

—-40 -20 0 20 40
X-position (m)

Fig. 6. Visualisation of the 8 classes based on a combination of zone (1-4) and attack
outcome (success, fail, that is in-/outside green area, respectively). Example trajecto-
ries of the ball demonstrate an unsuccessful attack from zone 1 (Z1y44, solid line) and
a successful attack from zone 2 (Z2syccess, dotted line).

6.1 Procedure

The raw data contain the coordinates of each player and the ball recorded at
10 Hz with an optical tracking system (SportsVU, STATS LLC, Chicago, IL,
USA). We analysed 73 matches from the seasons 2014-2018 from two top-level
football clubs in the Dutch premier division (‘Eredivisie’). For the current study,
we analysed attacking sequences, which were defined based on team ball pos-
session. Each attacking sequence was classed based on where an attack started
and whether it was successful. The starting locations were binned into 4 different
zones (see the ’stars’ in Fig. @ To deal with the low number of truly successful
attacks (i.e., goals scored), we classed each event using the distance to the goal
at the end of an attack as a proxy for success: Successful attacks ended within
26 m to the centre of the goal (see the green shaded area in Fig. |§[)

For each event, we computed 72 different metrics that capture football tac-
tics [2I]. Some of these metrics describe the spatial distribution of the players
on the pitch [7]. Other metrics capture the disruption of the opposing team (i.e.,
how much they moved in response to an action of the other team) [§]. Lastly,
we created a set of metrics related to the ball carrier’s danger on the pitch (i.e.,
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”Dangerousity” [20]), which is a combination of four components. Control mea-
sures how much control the player has over the ball when in possession. Density
quantifies how crowded it is between the ball carrier and the goal. Pressure cap-
tures how closely the ball carrier is defended. Lastly, Zone, refers to where on
the pitch the ball carrier is, where players closer to the goal get a higher value
than players further away. Note that the metric Zone only has values for the last
part of the pitch, which corresponds to zone 4 of zones used for the target.

Finally, we combined the classed events (i.e., attacking sequences) with the
tactical metrics by aggregating the temporal dimension by, for example, averag-
ing across various windows prior to the end of the event. The resulting feature
vectors were grouped based on whether the metrics described the Spatial distri-
bution of the players on the pitch (n = 1092), Disruption (n = 32), Control (n =
46), Density (n = 46), Pressure (n = 46), Zone (n = 46), Dangerousity (n = 46),
and all Link’s Dangerousity-related metrics combined (n = 230). Subsequently,
we trained five different classifiers (decision tree, linear SVC, k-NN, extra trees,
and random forest) with each of the eight feature vectors, yielding 40 different
models to evaluate with ML-ModelExplorer.

6.2 Model Evaluation with ML-ModelExplorer

An exploration of all models reveals the large variation in accuracy (see Fig. @
The difficulty of modelling tactics in football is apparent given how many of
the models are under Baseline Accuracy (i.e., majority class). Particularly the
Random Forests do well in this Machine Learning task. Next to the modelling
techniques, the different features subsets also yield varying model accuracies.
The Random Forests with Density, Zone, Dangerousity, Link and Spatial clearly
outperform the other subsets.

—e— Model Accuracy

Macro-Avg. Recall

Avg. Accuracy

Baseline Accuracy
= Random Accuracy

Fig. 7. An overview of the quality of all 40 models where an accuracy above baseline
indicates that the model performed better than simply taking the majority class.

By selecting the models with the highest accuracies, the per-class errors can
be easily compared (see Fig. . Two of the models, Spatial RF and Density RF
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have more class confusions with the successful attacking sequences. Here, the
class-imbalance seems to play a role: the more interesting successful attacking
sequences occur much less frequently than the unsuccessful attacking sequences.
This becomes even more evident when using the built-in function to switch to
relative numbers (see Fig. [8] left and right panel, respectively).

21 . 22 . z3 . 24 . 71 . 22 . 3 . 4 .
& & & & & & & &
N o N & N N 8 N N N <
Random Forests > <& @ & o & & Random Forests & &% @ o @ o &
Spatial \? Spatial \
o . ]
Link \ & Link \ s
. © N " .
Dangerousity ™~ 7 0 Dangerousity \%
o
Zone — 2 Zone \_S.,
@200 2 % ¥
2 2
i 8 Density = &
Density = O R S.
© [
Classes  Classes

Fig. 8. Absolute (left) and relative (right) class confusions of the most promising mod-
els.

In fact, a domain expert might put more or less importance to specific classes.
In this case, a football analyst would not be interested in unsuccessful attacks
starting in zone 1 (which also happens to be the bulk of the data). Using another
of the ML-Explorer’s built-in functions, the domain expert can deselect ’irrele-
vant’ classes. By excluding the unsuccessful attacks from zone 1 (i.e., "Z1q:"),
a clear difference in the best performing models becomes apparent: the Spatial-
related models perform worse than average when the least interesting class is
excluded (see Fig.[d). For a domain expert this would be a decisive difference to
give preference to a model that might not have the highest overall accuracy.

|
\

Model Accuracy
Model Accuracy

—— Rar

°! Density Zone Dangerousity Link Spatial Density Zone Dangerousity Link Spatial
Random Forests Random Forests

Fig. 9. The model qualities for the 5 most promising models with all classes included
(left) and the less relevant class Z1 44 excluded (right).
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By now, it is clear that the models have different strengths and weaknesses.
Some of the models perform well on the unsuccessful attacking sequences starting
further away from the opponent’s goal (i.e., Z1 44, but also Z24; and Z3 ).
These instances occur most frequently, but are not always the focus for the coach-
ing staff. In Fig. two of these distinct models are compared with and without
the least interesting class (Z1744) excluded (left and right panel, respectively).

All classes included Class Z1p; excluded

224 22 success

il Spatial_RF
M. Link_RF

----- Average

By

Z4success

ZAsuccess

24, 24

Fig.10. A direct comparison of the Spatial- and Link- related models. Compared
to including all classes (left panel), excluding the least interesting class gives a more
nuanced insight into the relevant differences between the two models (right panel).

Looking at all classes, it stands out that Z1,; is predicted correctly more
often than all other classes (see Fig. left panel). As this is also the least inter-
esting class, it clouds the accuracy for the other classes. After excluding 7144
(see Fig. right panel), it becomes clear that the Spatial-related model out-
performs the Link-related model in the classes related to zone 4 (Z4gyceess and
Z454i1). As these are attacking sequences starting from close to the opponent’s
goal, predicting these right is often less interesting than predicting the (success-
ful) attacking sequences correct that start further away from the goal. Therefore,
the use of all Link’s Dangerousity-related metrics is the most promising to exam-
ine how attacking sequences starting in different zones yield successful attacks.

7 Conclusion and future work

When selecting suitable Machine Learning models, the involvement of the expert
is indispensable for evaluation, comparison and selection of models. This paper
contributes to this overall goal by having proposed ML-ModelExplorer, involving
the expert in the explorative analysis of the results of multiple multi-class clas-
sifiers. The design goals were deduced from typical, recurring tasks in the model
evaluation process. In order to ensure a shallow learning curve, a combination of
well-known visualisations together with some more advanced visualisations was
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proposed. A user study was conducted where the participants were statistically
significantly more efficient using ML-ModelExplorer than working on raw classi-
fication results from scikit-learn. Note, that the authors believe that scikit-learn
is one of the most powerful libraries. However, for the recurring analysis of mul-
tiple models, approaches like ML-ModelExplorer can be powerful supplements
in the toolchain of Machine Learning experts.

While the usefulness was experimentally shown, there is potential for further
work. After performing the mentioned user stories, there is a possibility that no
single model is sufficient to fulfil the requirements of the given application. This
could be the case if the investigated models are strongly diverse in their decisions,
which would lead to different patterns in their class confusions. So for example
one model could have a very low accuracy on class C; but a high accuracy on
class Cs, while another model acts vice versa. In this case, taking the diversity
of the investigated models and classes into account, the composition of multiple
models could be used to improve the classification performances through means
of ensembles [5]. This would propose a useful addition to ML-ModelExplorer,
especially in cases where the formulation of diversity of the classes and their re-
spective confusions is not easily quantified [I7]. Additionally, the mentioned user
stories are not all encompassing. A scenario that is not covered, is the discovery
of classes that seem to be not properly defined or labelled. Consequences could
be the removal of that class, the separation into multiple classes or the merging
with other classes. In order to compare the new class definitions with the existing
one would require the comparison of differently sized confusion matrices.

ML-ModelExplorer enables domain experts without programming knowledge
to reason about model results to some extent. Yet, there are open research
questions, like how to derive concrete instructions for actions regarding goal-
oriented model hyperparameter adjustment, i.e. letting the expert pose what
if-questions in addition to what is-questions.
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