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Abstract

The massive growth of data produced in the automotive industry by acquiring
data during production and test of vehicles requires effective and intelligent ways
of analysing these recordings. In order to detect potential faults, data from the
in-vehicle network interconnecting vehicle subsystems is recorded during road
trials. The complexity and volume of this data keeps increasing since the de-
gree of interconnection between the vehicle subsystems and the amount of data
transmitted over the in-vehicle network is augmented with each functionality
added to modern vehicles. In this paper, an anomaly detection approach is pro-
posed that (a) is capable of detecting faults of known and previously unknown
fault types, (b) functions as an out-of-the-box approach not requiring the set-
ting of expert-parameters and (c) is robust against different driving scenarios
and fault types. To achieve this, an ensemble classifier is used consisting of
two-class and one-class classifiers. Without modelling effort and user parame-
terisation the approach reports anomalies in the multivariate time series which
point the expert to potential faults. The approach is validated on recordings
from road trials and it could be shown that the ensemble-anomaly detector is
robust against different driving scenarios and fault types.
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1. Introduction

The automotive industry has experienced a massive growth of the data
recorded during production and test of products. Vehicles have turned from
mechanical machines into highly complex products of interconnected subsys-
tems dominated by software and electronics. The complexity keeps increasing
since the degree of interconnection between the subsystems and the amount of
data transmitted over the in-vehicle network is augmented with each function-
ality added to modern vehicles. The number of electronic control units (ECUs)
that communicate over the in-vehicle network is up to 80. As a consequence,
there is a high chance of faults either caused by individual subsystems or by the
interconnection of those subsystems within the vehicle.

In order to detect potential faults, road trials are conducted by vehicle man-
ufacturers and suppliers and the multivariate time series data are recorded,
resulting in mass data. Only by effective and intelligent ways of analysing the
recordings, one can make sure that the effort put into the vehicle tests pays
off. Consequently, effective ways of data analysis can become a competitive
advantage.

Based on a training set of recordings from vehicles, the aim of this work is to
classify subsequences in a test set as either normal w,, or anomaly w,, i.e. as a
potential fault. This can be achieved by teaching an anomaly detection system
normal and abnormal behaviour by the means of a labelled training set and have
the system classify unseen data. This corresponds to two-class classification or
supervised anomaly detection [I] and has been reported to work for autmotive
data [2].

For fault-detection such an approach has major drawbacks. Obtaining or
creating abnormal training data is very intricate. If abnormal data can be
obtained, it is highly likely that it is not representative, because many faults
in a vehicle are not known or cannot easily be injected. However, using a
non-representative training data set of anomalies yields an incorrect decision
function.

On the other hand, normal data can easily be obtained by recording data
from a vehicle in normal operation mode. So an alternative is to only learn the
normal behaviour and classify deviations as anomalies referred to as one-class
classification [3] or semi-supervised anomaly detection [I]. This was successfully
applied to automotive data in [4], [5 [6]. The accuracy of such approaches are
however lower compared to two-class classification on a representative data set.

1.1. Proposed approach

For the detection of faults in automotive recordings there are two challenges
that are addressed in this paper:

a) An approach is needed that is capable of detecting known fault types as well
as previously unknown fault types. In [7] the capability to detect previously
unknown faults is identified as one of the most important properties of a
fault detection system.



b) Since recordings from vehicle tests are highly variable, an approach is re-
quired that is robust w.r.t. different driving scenarios. While a classifier
might yield good results on a specific data set, the same classifier may fail
to work well on different data sets [8].

The challenge to detect known and unknown fault types is addressed in
this paper by incorporating one-class and two-class classifiers into an ensemble
[9, 10).

The robustness w.r.t. different driving scenarios and different fault types is
tackled by using a set of diverse classifiers in the ensemble. Therefore different
types of anomaly detectors are used: one-class and two-class classifiers for uni-
variate and multivariate anomalies. The ensemble’s output is postprocessed in
order to report subsequences of anomalies.

The proposed approach has the following main objectives:

1. detection of known and unknown fault types in automotive multivariate
time series

2. functioning as an out-of-the-box approach that does not require expert
knowledge for configuration

3. robustness against different driving scenarios and fault types

The results on recordings from four different scenarios show the effectiveness
of the proposed ensemble method. The ensemble is capable to detect known
and unknown fault types and is robust against the variability of recordings
from a constrained environment (vehicle in idle mode) and an unconstrained
environment (recordings from overland drives).

1.2. Contributions

The following contributions are made in this paper:

1. the range of potential faults in a vehicle is carefully investigated and an
overview is given

2. a categorization of anomalies in automotive recordings is given

3. the performance of two-class and one-class classifiers are evaluated for the
detection of known and unknown fault types

4. an out-of-the-box ensemble method is created that can detect known and
unknown fault types without the need for expert knowledge

5. the ideas are validated on real data

This paper is organized as follows. The next section surveys related work.
Section 3 categorizes potential faults in vehicles, introduces ensemble methods
and briefly discusses the used base classifiers. Section 4 introduces the anomaly
detection approach, followed by section 5 reporting the experimental results and
discussing the outcomes. Section 6 concludes this paper.



2. Related work

This section surveys related work from the fields of fault and anomaly detec-
tion in automotive systems and ensemble-based anomaly detection and contrasts
it to this paper.

In [7] a general survey of fault detection is given. The detection of faults
or anomalies in automotive systems was addressed in various publications. The
authors of [0] used anomaly detection on vehicle data in the field of road con-
dition monitoring. Based on a training set of recordings from drives in normal
operation mode, potholes are identified as anomalies. In contrast to this work,
the approach in [5] detects a specific type of anomaly which differs from the
detection of faults, where different types of potentially unknown anomaly types
can occur.

The author of [2] discusses a data-driven approach to classify the health
state of an in-vehicle network based on the occurrences of so-called error frames
using a labelled training set of recordings from fault-free mode and faults. In
[11] predictive maintenance of commercial vehicles and buses is addressed us-
ing classification with known fault types included in the training set. These
approaches rely on a representative training set of faults, in contrast to the
present paper.

In [4] automotive security is addressed. From data recorded from the in-
vehicle network communication in normal operation mode, the normal value
of entropy is learnt. Deviations from that entropy are reported as potential
intrusions. In [6] and [I2] the author of this paper used one-class classification to
detect potential faults in recordings from road trials. In contrast to the present
paper, these papers do not exploit knowledge about occurred anomalies, i.e.
intrusions or faults.

The authors of [I3] and [I4] propose fault detection for predictive mainte-
nance of commercial vehicles. Data from different vehicles are compared and
anomalies are detected in an unsupervised manner being those vehicles deviat-
ing from the others. The approach is unsupervised, i.e. it does not incorporate
knowledge about the normal or abnormal operation mode, which differs from
the proposed approach in the present paper.

A hybrid of model-based diagnosis and one-class classification is proposed
in [15] to detect and isolate faults in vehicles. The approach is reported to be
capable to detect known and previously unknown fault types, but requires to
build a model.

Ensembles of classifiers have been successfully used to detect anomalies in
various applications. In [16] unreliable sensors in wireless sensor networks are
detected using an ensemble of five anomaly detectors. The diversity required
for effective ensemble methods is modelled by using different classifiers exploit-
ing different aspects of the data: spatial redundancy of sensors located close to
each other, temporal redundancy of consecutive sensor readings and the com-
bination of both. In the same research field, the authors of [I7] proposed to
use an ensemble of classifiers to detect anomalies in a decentralized manner
under the constraints of limited resources on the embedded systems of sensor



networks. The authors of [I8] proposed an ensemble anomaly detection method
for streaming data. In [I9] ensemble-based anomaly detection using Hidden
Markov models was applied to intrusion detection based on system calls and
a method was proposed to prune the number of base classifiers. Ensembles of
unsupervised anomaly detectors were applied on data sets for intrusion detec-
tion and for breast cancer detection in [§]. In [20] an ensemble of one-class
classifiers is proposed that uses dynamic selection of the most appropriate base
classifer for a given input feature vector based on the classifiers’ accuracies over
the feature space.

The authors in [21] contrasted the performance of two-class and one-class
classifiers for the task of keystroke dynamics authentication, but did not combine
the classifiers to an ensemble.

3. Background

In this section potential fault locations in vehicles are surveyed, followed
by a categorization of anomaly types that can be present in recordings from
vehicles. Following that, ensemble-based anomaly detection is introduced and
the two-class and one-class classifiers that are used in the proposed ensemble-
based anomaly detector are described.

3.1. Fault detection in automotive recordings

To emphasize the scale of the problem, potential fault locations in a vehi-
cle were identified and are presented in Fig. The tree-like structure shows
how manifold faults can be. At the top level the locations are categorised into
function specifications, in-vehicle network, sensors, actuators, ECUs, gateways,
power supply, vehicle subsystems, and the data acquisition system. Fault lo-
cations in ECUs can be further subdivided into software and hardware. For a
more detailled discussion the reader is referred to [6].

A recording of a road trial corresponds to time series data or can be resam-
pled equidistantly to become time series data. Time series can be univariate or
multivariate [22], where observations of one variable are referred to as univari-
ate and observations of multiple variables are referred to as multivariate. An
example of a univariate time series is the recording of the vehicle’s velocity sig-
nal over some period of time. A multivariate time series would be the vehicle’s
velocity together with further signals like yaw rate, steering wheel angle and
engine speed.

In this paper, faults are detected using an anomaly detection approach. The
term anomaly is defined as a condition that deviates from expectations in ISO-
26262 [23]. Other terms used in literature are novelty, outlier [24] and discord
[25].

In [I], anomalies are categorised as point, contextual, and collective anoma-
lies. The idea of point and contextual anomalies was borrowed for this work
and applied to recordings from automotive systems.

A multivariate time series consists of multiple univariate time series. There-
fore in a multivariate time series, anomalies of a univariate time series can occur.
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Figure 1: Categorisation of potential fault locations in a vehicle.

Additionally, anomalies in the relationship between the contained univariate
time series can occur. The following three types of anomalies are distinguished
in this work:

1. Type I: subsequence anomaly in univariate time series. An individual
subsequence can be classified as normal or abnormal without konwledge
about further subsequences.

2. Type II: contextual anomaly in univariate time series. Classification of an
individual subsequence requires knowledge about the context, i.e. about
preceeding subsequences within the same univariate time series.

3. Type III: contextual anomaly in multivariate time series. Classification of
an individual subsequence in a multivariate time series requires knowledge
about subsequences in additional univariate time series.

This work will focus on anomalies of type I and type III. Anomalies of type
1T could for example be detected using Hidden Markov models [26].

3.2. Ensemble-based anomaly detection

In this work an ensemble of classifiers is used for anomaly detection. In
ensemble-based classification, a number of base classifiers are combined and
their outputs are used to create a single classification result. There are different
methods to combine the outputs of the base classifiers. Many methods use the
crisp classifier outputs and apply majority voting, weighted voting or select the
best subset of base classifiers. Other methods weight a base classifier’s output
w.r.t. the class. An alternative approach referred to as stacking uses continuous
classifier outputs as features to train an independent classifier [9] 27].

The base classifiers in the ensemble are desired to be diverse [27], i.e. to yield
different classification results. Only by disagreeing on some feature vectors can



ensembles become more effective compared to the use of individual classifiers.
One diversity measure is the entropy measure [28], which is given by

¥ Z el = ) o

where N is the number of feature vectors, |C| is the number of base clas-
sifiers and c¢(x;) is the number of classifiers that classified the feature vector
x; correctly. In this work the requirement of having diverse classifiers is met
in several ways: one-class and two-class classifiers are incorporated as well as
classifiers for the detection of univariate and multivariate anomalies.

There are different variations of ensemble classifiers. The authors in [27]
distinguish between the application of the same classifier on different subsets
of the training set and the application of different classifiers on one common
training set. The selection of base classifiers can be static, where a fixed set
of classifiers is used or dynamic, where the selection is based on the previous
classifications. In [29] ensemble classifiers are categorized into independent and
sequential ensembles, where the first refers to the application of different clas-
sifiers on the complete or a subset of the training set. The latter refers to the
sequential application of one or more classifiers, where the classification is in-
fluenced by the previous results. In this work the selection of base classifiers is
done statically.

8.8. Anomaly detection using two-class classifiers

Detecting faults in test drive recordings can be solved by means of classifi-
cation using a training set with labelled data from normal operation mode and
faults, which is referred to as supervised anomaly detection [I]. In the case
of normal and abnormal corresponding to one class each, two-class classifica-
tion can be used. Two-class classification is a long-established research field
and classifiers from a broad range can be used. Four two-class classifiers were
selected to be incorporated into the ensemble: mixture of Gaussians classifier,
Naive Bayes classifier, random forest, and support vector machine.

MOG. The mixture of Gaussians (MOG) classifier is used in a univariate way
addressing anomalies in univariate time series (type I anomalies, as defined in
Section . For each feature the one-dimensional probability density function
is determined from the training set, one for each of the two classes w,, and w,.
If for one feature, an instance is classified as anomaly, the entire instance is
classified as an anomaly. The classifier thereby detects if e.g. one signal is out
of the valid value range.

Nuaive Bayes. The naive Bayes classifier [30] estimates each class’ probability
density function for each feature individually and determines thresholds that
minimize the probability of misclassification. Following that, the decision func-
tion is determined by combining the thresholds of each dimension. The classifier
assumes independence between the features but has been reported to work well
for cases where this assumption does not hold.



Random forest. A random forest [31] is an ensemble method that grows a high
number of decision trees on different subsets of the feature space and of the
training set. The classification result is based on the combination of the trees’
outputs.

Support vector machine. A support vector machine (SVM) [32] [33] is essentially
a two-class classifier and can thereby be used to distinguish between the two
classes w, and w,. A separating hyperplane is determined from the training
data set by demanding a class separation with maximum margin, allowing some
instances to be outside the decision boundary controlled by the regularization
parameter C'. An SVM can be enhanced to function as a non-linear classifier by
using the kernel trick to map the input feature space to a higher-dimensional
feature space, where the data can be linearly separated by a hyperplane. In this
work, the RBF kernel is used adding the kernel parameter v. No assumptions
about probability distributions are made by an SVM, classification is exclusively
done based on the instances at the boundaries of the classes.

8.4. Anomaly detection using one-class classifiers

Obtaining or creating abnormal training data is very intricate. Recordings
from normal operation mode on the other hand can be obtained easily. In
practice it is unlikely to have a representative training set of all possible faults,
making one-class classification [3, [34] especially valuable to detect unknown or
unmodelled faults.

The goal is to learn the normal behaviour based on a training set that
exclusively contains instances from the normal class, which is also referred to as
semi-supervised anomaly detection [I]. Test instances are classified as normal
if they are similar in some way to the training set or as anomalies otherwise.

As opposed to two-class classifiation, for one-class classification optimising
the trade-off between true and false positives is not possible, since no anomalies
are present in the training set. The challenge in one-class classification is to
learn the boundaries of the normal region. It requires the setting or tuning of
parameters which can be pre-defined, defined based on heuristics, or determined
from the training set.

On the one hand, one-class classifiers have the potential to detect unexpected
faults that were not covered by the test process or not modelled. On the other
hand, the accuracies of one-class classifiers will typically be lower compared to
two-class classification with a respresentative training set.

Some two-class classifiers can be adopted to become one-class classifiers.
In addition there are classifiers specifically designed for one-class classification.
The following four one-class classifiers are used in the ensemble in this work:
extreme value analysis, Mahalanobis classifier, one-class support vector machine,
and support vector data description.

Extreme value analysis. In extreme value analysis [29] a normal distribution
is assumed and the mean value and standard deviation are determined. A
threshold is required for extreme value analysis to act as a classifier. It is used



as a univariate classifier, i.e. each feature is treated individually equivalently to
the univariate MOG classifier.

Mahalanobis classifier. The Mahalanobis distance uses the covariance matrix
of the data set to incorporate the correlations between features into the distance
calculation. For a given feature vector, it is the distance of the feature vector to
the mean value of a multi-dimensional distribution. In order for the Mahalanobis
distance to be used as as classifier, a threshold has to be set.

One-class support vector machine. The one-class support vector machine (OC-
SVM) proposed in [35] uses a hyperplane to separate normal and anomalous
instances, where the position of the hyperplane is controlled by the parameter
v. An RBF kernel is used in this work introducing the kernel parameter .

Support vector data description. In [36] the one-class support vector machine
“support vector data description” (SVDD) was introduced. While other support
vector machines separate the data by a hyperplane, SVDD forms a hypersphere
around the normal instances in the training data set. The hypersphere is found
by solving the optimisation problem of minimising both, the error on the nor-
mal class and the chance of misclassifying data from the abnormal class. The
soft-margin SVDD with an RBF kernel is used, introducing the regularization
parameter C' and the RBF Kernel parameter ~.

4. The methodology: ensembled-based anomaly detection

In this section an approach for the detection of anomalies in automotive
recordings is proposed and its components are discussed.

Fault detection in automotive recordings puts special requirements on the
task of anomaly detection. Faults should be detected, regardless if the fault
types are included in the training set or not. Reasons for the latter could be that
the faults are unknown, unexpected or recordings are unavailable. Furthermore,
the approach is required to be robust against the high variablity of the recordings
caused by different driving scenarios and environmental conditions. In addition
anomalies that are present in a univariate time series as well as in the relation
between the individual time series should be detected.

A data-driven approach is proposed that is trained on a data set of record-
ings from vehicles. The aim is to classify subsequences as either normal w,, or
anomaly w,, where an anomaly points to a potential fault. The aim is not to
classify the type of faults, but rather to detect whether a fault was present at a
given point in time. Reported anomalies could be faults, but could also be data
from a system’s operation mode or driver behaviour that were not contained
in the training set. In this work an anomaly is referred to as a positive, so a
detected anomaly that points to a fault is referred to as a true positive (TP).

The process from the input of raw data to the reporting of anomalous subse-
quences is described in this section. The process is subdivided into the following
steps: data selection, data transformation, ensemble classification, filtering and
the creation of subsequences as shown by the flowchart in Fig. [2|
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Figure 2: Flowchart showing the steps of the approach, where the data flow is illustrated by
arrows. The training and test data are passed to the ensemble and hence to the individual
base classifiers. The classifiers’ outputs are combined by majority voting, followed by a filter
and a sequencer.
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4.1. Data selection

The data selection step is used during training mode. The full training set is
passed to the two-class classifiers, while only the recordings containing no faults
are selected and passed to the one-class classifiers.

4.2. Data transformation

In the data transformation step the multivariate time series are transformed
to feature vectors by transforming the values at each time point T; to a feature
vector F;. An M x N multivariate time series is thereby transformed to N
feature vectors F; = (1.4;,%Z2.t;5---,%ae;) of length M.

Following that, the feature vectors are normalized feature-wise. Dimension-
ality reduction like PCA or the handling of the imbalanced classes e.g. using
SMOTE [37] did not have a positive effect on the results and was therefore not
implemented in the final solution, but should generally be considered for an
anomaly detection approach.

4.3. The ensemble

To address the requirements (a) of being robust against the data variability
from different driving scenarios and (b) to detect known and unknown fault
types, it is proposed to use ensemble classification [27]. The challenge to detect
known and unknown fault types is addressed by incorporating two-class and
one-class classifiers, where the latter ones have their strengths for the case of
unknown fault types. The robustness w.r.t. different driving scenarios and
different fault types is addressed by using a set of diverse classifiers. Different
types of anomaly detectors are used: MOG and extreme value analysis focus
on the detection of faults in the univariate time series, while the remaining six
classifiers are capable to detect multivariate anomalies.

An independent ensemble is used with different base classifiers trained on
the same training set, where the one-class classifers are trained on the subset
of fault-free recordings. The selection of the base classifiers was done statically,
based on considerations of the diversity of classifiers. The following four two-
class classifiers are incorporated into the ensemble:

MOG. The mixture of Gaussians classifier is used since it is a simple method
for the detection of univariate anomalies.

Naive Bayes. The naive Bayes classifier has been successfully used in many
applications. It is used since it bases on the estimation of the data’s distribution,
in contrast to the used random forest or support vector machines, ensuring
diversity between the base classifiers.

Random forest. A random forest was selected as a base classifier, since it is an
ensemble method itself. By using decision trees it is entirely different from the
other classifiers. Random forests have been used on automotive data, e.g. in
[38]. The parameters were set as given in Table
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Support vector machine. In order to be diverse to the previous classifiers, a
support vector machine is used as a base classifier. SVMs find the decision
function by determining the maximum margin without assumptions about the
distribution of the data. They have been used for fault detection in many
publications, e.g. in [39]. A two-class soft-margin SVM with RBF kernel is
used. The parameters are tuned using grid search.

In order to address previously unseen faults, the following four one-class
classifiers are used as base classifiers in the ensemble:

Ezxtreme value analysis. This classifier was selected since it is a simple method
to detect univariate anomalies. The required threshold is set to mean value 430
per feature, i.e. feature values that deviate from the feature’s mean value by
more than 3o are classified as anomaly.

Mahalanobis classifier. The Mahalanobis classifier was selected since it is a
standard method for the detection of anomalies in multidimensional feature
space. In order to use the Mahalanobis distance as a one-class classifier, the
threshold for the distance is set to 3o.

One-class support vector machine. One-class support vector machines have been
successfully used for anomaly detection in many publications, therefore the SVM
proposed in [35] is used as a base classifier in its variant with an RBF kernel.
The required parameter v was set to %, where N is the number of instances
in the training set, which corresponds to the case, where no anomalies are ex-
pected in the training set. The kernel parameter v was set to %, where D is
the number of features, as done by [40].

Support vector data description. The one-class support vector machine SVDD
with RBF kernel was successfully used for anomaly detection in automotive
data of the same kind in [6] and was hence incorporated into the ensemble.
Having to manually adjust the parameters would make SVDD non-applicable
for the problem discussed in this paper, therefore autonomous parameter tuning
is desired. The author of this paper proposed an approach to tune the SVDD
parameters solely on the training set [41]. The approach bases on the observation
that for the radius of SVDD’s hypersphere a value of 1 can be considered as
optimal over the entire value range. The trade-off between the optimal radius
and the error rate is optimised to find the optimal set of parameters. This
approach was shown to yield good decision boundaries for a variety of data sets
[6].

For the case where the RBF kernel is used, SVDD and one class-SVM are
similar [3], i.e. the difference here is solely the parameter tuning.

In accordance with the goal defined in Section [1} to have an out-of-the-box
method without the need for user-defined parameters, the aim was to determine
the parameters from the training set or to set them based on heuristics. The
base classifiers used in the ensemble anomaly detector and their parameters are
shown in Table[1

12



base classifier parameters
MOG -
naive Bayes -

two-class random forest | features at split = [v/D|
number of trees = 500
SVM v, found by grid search
extreme value threshold = +30
Mahalanobis threshold = 30
one-class

one-class SVM | v = %, v = %

SVDD v,y found by
autonomous param. tuning

Table 1: Classifiers used as base classifiers in the proposed ensemble anomaly detector, to-
gether with the setting of parameters (where N is the number of instances in the training set,
D is the number of features and o is the standard deviation).

4.4. The voter: combining classifier outputs

Each base classifier of the ensemble classifies the individual feature vectors
and passes its result to the voter. The voter combines these crisp outputs to
one result using

k
Ce = Zwici (2)
i=1

where k is the number of base classifiers C; and w; is the weight for each
base classifier. C; can take on the values 0 if classified as w,, and 1 if classified
as w, and C, takes on values of [0,1]. In this paper majority voting is used, i.e.
all w; are set to w; = % Classification is then done as follows, where in the case
of a draw, the feature vector is classified as anomaly:

normal if C. < 0.5
Cg = ) (3)
anomaly if C. > 0.5

As an alternative to majority voting, the approach can be enhanced towards
a weighted voting by manually adjusting the weights w; in (2)) if there is evidence
that certain base classifiers perform better or to focus on previously known or
unknown faults by weighting the two-class and one-class classifiers differently.

The weights could also be tuned based on the training data. This approach
was however not followed since there is no reason to assume that the faults in
the training set are representative and a tuning of the ensemble towards these
faults is hence not desired. As the anomaly detector is in operation it will detect
more previously unseen faults. By incorporating these faults in the training
set, the tuning of the weights is then an option for further improvement. The
alternative to use a base classifiers’ outputs and train an independent classifier,
i.e. stacking, requires a larger amount of labelled data from both classes.

13
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Figure 3: Classification of subsequences showing correctly and falsely detected anomalies (TP,
FP), correctly detected normal subsequences (TN) and undetected anomalies (FN).

4.5. The filter

Since recordings from test drives are noisy, a filter is applied to the output
of the ensemble. Recordings from similar situations show similar but not iden-
tical values. These values are likely to be normal, but were recorded in slightly
different conditions regarding e.g. weather, road or driver behaviour. Classi-
fying individual data points thereby yields a high number of falsely detected
anomalies. An approach is needed, that compensates for small deviations of
data points. The idea is to not classify individual data points, but to incorpo-
rate the local neighbourhood of the data points by working on subsequences.
If the feature vectors of k subsequent time points are classified as anomaly, the
current subsequence is classified as anomaly, where £ = 3 in this work, which
corresponds to a fault that is present for > 3 seconds.

4.6. The sequencer: forming subsequences

Faults in the recordings can be of arbitrary length. Therefore the classifica-
tion results are not based on individual time points but rather on variable-length
subsequences that are formed by a sequencer. In the test set, consecutive data
points of the same label are grouped together as variable-length subsequences
and are denoted by si4p,, for normal subsequences and s;qp,,, for abnormal ones
respectively.

The classification results are then determined as follows, where Sclass,, 15 a
variable-length subsequence classified as abnormal and Sclass,,, @ Subsequence
classified as normal. An example is shown in Fig.

W

TP: Elsclasswa Q Slabwa
FN: /Hsclasst - Slab.,,,
FP: Vsciass., < Siab.,
TN: Vscass,, S Stab,,

—~ o~ o~
D Ot
NN NS N

The described approach was applied to recordings from road trials, the re-
sults are presented in the next section.
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Short name Full OBD name

load Calculated Load Value

coolant temp Engine Coolant Temperature
STFT * Short Term Fuel Trim (Bank 1)
MAP Intake Manifold Absolute Pressure
rpm * Engine RPM

speed Vehicle Speed

ign timing adv * | Ignition Timing Advance

throttle Absolute Throttle Position

Table 2: Vehicle signals used for the experiments on recordings from the vehicle in idle mode
and overland drives, where the signals used for idle mode are marked by asterisks.

5. Experimental results

This section shows the detection of faults in recordings from vehicles. The
results of the ensemble as well as of the individual one-class and two-class clas-
sifiers are given in the tables. The first two experiments work in a constrained
environment, where data was recorded from the vehicle in idle mode. The third
and fourth experiment use recordings from drives in overland traffic, i.e. drives
within towns and on ordinary roads. The detetection of known and unknown
fault types is investigated.

5.1. Data sets

A “Renault Twingo I” (model year 2002, 1149 ccm, 43 kW) was used as
the test vehicle due to the easy accessibility of components in the engine bay.
The data during the test drives were recorded using the on-board diagnostics
interface according to ISO 15031 (OBD-II or EOBD).

The 8 recorded signals shown in Table[2] were used for the experiments, where
the 3 signals marked by an asterisk were used for the experiments on idle mode.
The signal load refers to the engine’s load, coolant temp holds the temperature
of the engine coolant, and STFT (short term fuel trim) is the injection pulse
width, which keeps the air-fuel ratio optimal, i.e. the lambda value close to 1.
The signal MAP is the manifold absolute pressure which is used to calculate the
air mass flow rate, which in turn determines the fuel to be injected for optimal
combustion. Furthermore, rpm is the engine revolution per minute, speed refers
to the vehicle’s speed and ign timing adv (ignition timing advance) measures
the angle of the piston position where the ignition takes place. Finally the value
of throttle holds the position of the throttle valve, which is directly proportional
to the accelerator pedal position.

5.2. Injected faults

In order to validate the anomaly detection system, faults were injected into
the test vehicle during drives in order to obtain recordings with errors. The
faults were injected using a self-made device that allows for manipulations in
the engine bay during a drive. This was done in two ways:
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1. by interrupting connections in order to simulate the failure of a component
or a cable break

2. by bypassing a sensor using a potentiometer in order to simulate an erro-
neous sensor

The focus was the detection of intermittent faults, so the faults were injected
for a limited time span (several seconds to minutes). These intermittent faults
are a challenge for fault diagnosis in practice, since the faults only occur under
specific conditions and may have disappeared when the vehicle has returned to
the plant or a repair shop. The simpler case of detecting permanent faults, i.e.
faults that do not disappear after they have occurred, was not addressed.

The types of faults were chosen such that they manifest themselves as dif-
ferent types of anomalies as given in the categorization in Section [3.1

Referring to the locations of potential faults identified in Fig. [T} the injected
faults correspond to faults in the cable harness, actuators, or sensors. Four
different types of faults were injected. One recorded drive is shown in Fig.

Fault 1: erroneous injection. Misfiring by an erroneous or coked injector nozzle
or a loose contact in wiring was simulated by switching off an injector nozzle for a
short period of time, suppressing injection for one cylinder. As a countermeasure
the engine control system adapts the injection pulse width, which is observable
by a change in the signal STFT. For some of the injected faults this leads to
values of STFT that are greater than the values in the training set, i.e. this leads
to a type I anomaly. The remaining occurrences correspond to anomalies of type
III (contextual anomaly in multivariate time series) and are only detectable by
considering dependent signals.

Fault 2: erroneous ignition. A loose connection in the spark plug lead or a worn
spark plug was simulated by interrupting the spark plug lead for a short period
of time while the vehicle was standing still. This causes the engine control
system to adapt, which is observable in the STFT signal. The signal increases
but not to values that are out of the normal range, which makes this fault an
anomaly of type III.

Fault 3: unavailable engine temperature. A loose contact in the wiring of the
temperature sensor was simulated by interrupting the connecting wire, which
leads to signal values out of the value range present in the training set. The
fault manifests itself as an anomaly of type I (subsequence anomaly in univariate
time series) in the categorization in Section

Fault 4: erroneous engine temperature. An error in the sensor measuring the

engine coolant temperature was introduced by adding positive or negative sensor
offsets using a potentiometer. This fault corresponds to a type I anomaly.
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Figure 4: Faults of type 1, injected during an overland drive of approximately 40 minutes.

5.8. Setup of experiments

The two-class classifiers were trained on data sets containing normal data
and faults, the one-class classifiers were trained on the same training set but
without recordings containing faults. To be realistic, the splitting of training
and test sets was not done on the basis of feature-vectors. An entire drive was
assigned to either the training or test set, where no recording was part of both.
Two scenarios were investigated: (a) the detection of known fault types, where
recordings of the same fault types were included in the training and test set and
(b) detection of unknown fault types, where recordings of previously unseen
fault types were included in the test set.

Experiments for the following setups were conducted:

1. idle mode with known fault types

2. idle mode with unknown fault types

3. overland drives with known fault types
4. overland drives with unknown fault types

For the first and the third experiment the fault types 1 and 2 were included in
the training and test set for the two-class classifiers. The second and fourth ex-
periment address the problem of not being able to model all possible faults, since
many faults are either unknown or there are no recordings available. Therefore
the test set exclusively contains faults of the types 3 and 4, which were not
included in the training set.

The results of the individual two-class- and one-class-classifiers, as well as the
results of the ensemble are reported in one table for each of the four scenarios.

The following metrics are presented in the results: the true anomaly rate
(TPR), which gives the percentage of detected anomalies and the precision
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classifier TPR | prec | F2-score
MOG 100 100 100
twooclass naive Bayes 100 | 42.9 78.9
random forest 100 | 60.0 88.2
SVM 100 92.3 98.4
extreme value 100 100 100
one-class Mahalanobis 100 100 100
one-class SVM 100 | 34.3 72.3
SVDD 100 | 92.3 98.4
ensemble | all 100 | 46.2 81.1

Table 3: Experiment 1: classification results on recordings from idle mode.

(prec), which expresses the percentage of true faults in the result set of reported
anomalies.

Anomaly detection is the trade-off between missing faults and falsely report-
ing normal instances as anomalies. In addition to TPR and precision, as a single
figure to evaluate the approach, the F2-score is used (eq. ) The F2-score
incorporates TPR and precision while putting more emphasis on the detection
rate. For all used metrics, 100% is the optimum.

5« precx TPR

F2- =
seore 4 xprec+TPR

(8)

5.4. Experiments on recordings from idle mode

The first expmeriment is the detection of known fault types from a vehicle
in idle mode. The results are shown in Table Bl All classifiers detected all
injected faults, but the precision varies between the classifiers. MOG, extreme
value analysis and Mahalanobis detected all faults and did not classify a single
normal instance as anomaly. For the one-class SVM the precision and F2-score
is the lowest, i.e. a high number of normal instances were falsely classified
as anomaly. The ensemble’s F2-score is below the F2-score of the best base
classifiers.

The second experiment incorporates fault types that were not previously
included in the training set. The results are given in Table [ The F2-score of
two of the two-class classifiers descreased to 34.1% and 44.4%. The one-class
classifiers’ results decreased but are still at a useful level, having detected the
majority of the faults.

5.5. Ezperiments on recordings from overland drives

The third experiment bases on recordings from overland drives. Overland
drives are much more variable than idle mode, which in general is expected to
lead to more normal instances being falsely classified as faults. This is confirmed
by the results shown in Table where most of the classifiers show a lower
precision. Naive Bayes, one-class SVM and SVDD yield reasonably high F2-
scores, while detecting 89.5% of the faults. The Mahalanobis classifier performs
poorly, which could point to the threshold not being appropriate for the data
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classifier TPR | prec | F2-score
MOG 30.0 | 75.0 34.1
two-class naive Bayes 90.0 | 69.2 84.9
random forest 80.0 100 83.3
SVM 40.0 80 44.4
extreme value 90.0 | 75.0 86.5
one-class Mahalanobis 90.0 | 60.0 81.8
one-class SVM 60.0 | 60.0 60.0
SVDD 60.0 | 85.7 63.8
ensemble | all 80.0 | 57.1 74.1

Table 4: Experiment 2: classification results on recordings from idle mode, where the test set
solely contains fault types that were not included in the training set.

classifier TPR | prec | F2-score
MOG 47.4 | 69.2 50.6
two-class naive Bayes 89.5 | 47.2 75.9
random forest 94.7 | 25.4 61.2
SVM 73.7 | 35.9 60.9
extreme value 42.1 | 25.8 37.4
onoe-class Mahalanobis 73.7 7.1 25.6
one-class SVM 89.5 | 60.7 81.7
SVDD 89.5 | 43.6 73.9
ensemble | all 89.5 | 35.4 68.5

Table 5: Experiment 3: classification results on recordings from overland drives.

set. The ensemble shows a high detection rate but misclassified a number of
normal subsequences as faults, resulting in a medium F2-score.

The fourth experiment is a scenario that is highly relevant in practice. The
test set of the recordings of overland drives solely contains fault types that are
not included in the training set. The results of the two-class classifiers become
useless as shown in Table[6] None of the unknown faults were detected by three
of the classifiers.

The one-class classifiers detected the majority of the unknown faults with a
reasonably high F2-score. For this experiment, that is viewed as the most rele-
vant one, the ensemble’s F2-score is better than any of the individual classifiers.

In addition to the classification results, the ensemble’s diversity for the four

classifier TPR | prec | F2-score
MOG 0 0 0
two-class naive Bayes 50.0 | 30.0 44.1
random forest 0 0 0
SVM 0 0 0
extreme value 83.3 | 35.7 65.8
one-class Mahalanobis 100 | 14.6 46.2
one-class SVM 83.3 | 714 80.6
SVDD 83.3 | 71.4 80.6
ensemble | all 83.3 | 83.3 83.3

Table 6: Experiment 4: classification results on recordings from overland drives, where the
test set solely contains fault types that were not used during training.
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experiment diversity E
idle mode with known fault types 0.093
idle mode with unknown fault types 0.139
overland drives with known fault types 0.123
overland drives with unknown fault types 0.223

Table 7: The ensemble’s diversity measure for the different experiments. The diversity’s value
range is 0...1, where higher values indicate higher diversities.

experiments is investigated. The diversity measure entropy is used showing
how much the base classifiers disagreed (see Table .

5.6. Discussion of results

In this section the results of the base classifiers and the ensemble are dis-
cussed on basis of the F2-scores. The F2-scores of all classifiers for all four
experiments are shown in Fig. There is no one classifier that performs best
in all experiments. Some of the classifiers behave extremely volatile w.r.t. the
different experiments, e.g. MOG and SVM, confirming the challenge regarding
variability of the data from different setups (Section .

From the F2-scores a robustness measure is derived by

robustness = 100 — range(F2-score) (9)

yielding values in the range of 0..100%, where high values indicate high
robustness over the different experiments. The robustness w.r.t. the F2-score
mean values over all experiments is shown in Fig. [6] SVDD has the best F2-
score averaged over all setups (79%), indicating that the autonomous parameter
tuning [41] yields good parameters. The robustness however is at a value of only
65%. The ensemble has the second best average F2-score (77%) and has the
major benefit of a high robustness over all experiments (85%), i.e. the variance
of the results is the lowest. This shows the effectiveness of the proposed ensemble
method to tackle the variability problem introduced in Section

Not surprisingly, the two-class classifiers performed best for the experiments
with known fault types in a constrained environment (idle mode). The setup
regularly encountered in practice, where fault types occur that were previously
not included in the training set shows the limitations of the two-class classifiers.
Three of the four two-class classifiers failed to detect any previously unseen fault
types in overland drives.

On the other hand, One-class classifiers make no assumptions about potential
faults, all instances that deviate from the training set are reported as anomalies.
For that reason one-class classifiers performed well for unknown fault types. In
specific, the one-class SVM and SVDD were stable for all four setups.

As shown in Table[7] the ensemble has a higher diversity for the experiments
with previously unseen fault types. The shortcomings of the two-class classifiers
are compensated by the one-class classifiers in that setup. This shows the effec-
tiveness of the approach of combining one-class and two-class classifiers for the
challenge to detect known and unknown fault types, as introduced in Section [T}
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Figure 5: F2-scores for all classifiers in all of the four experiments: (1) idle mode with known
fault types, (2) idle mode with unknown fault types, (3) overland drives with known fault
types, and (4) overland drives with unknown fault types.

The major benefit of the ensemble is the robustness against the different
setups of known and unknown fault types as well as its robust performance on
recordings from a constrained environment (idle mode) or from an unconstrained
environment (overland drives). The results of the individiual classifiers are
volatile. While for specific setups, some of the individual classifers outperform
the ensemble, the ensemble supplies the most stable results over all experiments
making it most appropriate for the problem addressed in this paper.

6. Conclusion

In this paper anomaly detection in multivariate time series from vehicle tests
was addressed. It was shown how manifold the potential faults in vehicles can
be and which types of anomalies can be present in the data.

An anomaly detection approach was proposed that detects different faults of
known and unknown fault types in various driving conditions and works with-
out setting of expert-parameters. An ensemble anomaly detector was created
consisting of two-class and one-class classifiers in order to detect both, fault
types that were included in the training set and previously unseen fault types.
The base classifiers’ parameters were either pre-defined or determined from the
training set making the ensemble and out-of-the-box approach.

The approach was validated on recordings from road trials. The results show
that the individual base classifiers are sensitive to the given scenario. In general,
the two-class classifiers yield good results for known fault types while the one-
class classifiers perform best for previously unseen fault types. The individual
classifier performing best over all tested scenarios is the one-class support vector
machine SVDD with an autonomous parameter tuning approach. The ensemble
anomaly detector yielded a high F2-score with the major benefit that the results
were stable over all experiments with known and unknown fault types in idle
mode and for overland drives.
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While the approach was designed for offline-analysis of recordings from road
trials, applications like predictive maintenance or condition monitoring can base
on this work.

The approach in this paper was designed for the offline-analysis of record-
ings from road trials. However, applications requiring anomaly detection in
an online-manner can also benefit from this approach. Examples are predic-
tive maintenance and condition monitoring. In addition to automotive systems,
the ideas discussed in this paper are applicable to related domains like fault
detection in industrial applications.
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